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Abstract: In recent years, artificial intelligence (AI), as a rapidly developing and powerful tool to

solve practical problems, has attracted much attention and has been widely used in various areas.

Owing to their strong learning and accurate prediction abilities, all sorts of AI models have also been

applied in wastewater treatment (WWT) to optimize the process, predict the efficiency and evaluate

the performance, so as to explore more cost-effective solutions to WWT. In this review, we summarize

and analyze various AI models and their applications in WWT. Specifically, we briefly introduce the

commonly used AI models and their purposes, advantages and disadvantages, and comprehensively

review the inputs, outputs, objectives and major findings of particular AI applications in water quality

monitoring, laboratory-scale research and process design. Although AI models have gained great

success in WWT-related fields, there are some challenges and limitations that hinder the widespread

applications of AI models in real WWT, such as low interpretability, poor model reproducibility

and big data demand, as well as a lack of physical significance, mechanism explanation, academic

transparency and fair comparison. To overcome these hurdles and successfully apply AI models in

WWT, we make recommendations and discuss the future directions of AI applications.

Keywords: artificial intelligence; wastewater treatment; machine learning; artificial neural network;

search algorithm; water quality

1. Introduction

Water resources, one of the most significant elements in human life and production
processes, are now under serious threat from harmful pollutants caused by human activities
and natural processes [1]. A large amount of wastewater is produced every day, most of
it contains toxic pollutants and is directly released into the environment without being
treated or reused [2]. In general, untreated sewage is rich in various nutrients, organic mat-
ters, suspended solids (SSs), organic micropollutants and pathogenic and nonpathogenic
microorganisms [3]. Depending on the source, wastewaters can be classified into six cate-
gories: municipal, domestic, industrial, medical, agricultural and nuclear. Among them,
municipal and domestic wastewaters are the most abundant, and the research on WWT is
concentrated on these two types of sewage [4]. Because wastewaters with different sources
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may differ significantly and have different physical and chemical properties, it is important
to assess their characteristics before choosing the appropriate treatment process. In order to
protect the limited water resources, environment and human health and meet the growing
water demand, it is imperative to explore the treatment of wastewaters and their reuse as
a resource. Wastewater treatment (WWT) removes contaminants from sewage involving
a combination of physical, chemical and biological processes [5], and produces clean water
that is safely released back into the environment. The key issues of WWT are how to reduce
water pollution to a safe level efficiently while producing fewer negative impacts on the
environment and decreasing energy consumption. Overall, WWT, as an indispensable
process for water resources reuse and sustainable development, is essential for protecting
public health and the environment and has been widely used in industrial and agricultural
fields [6]. Effective and innovative technologies are urgently needed to improve efficiency,
reduce cost and decrease the energy consumption of WWT [7,8].

Artificial intelligence (AI) refers to the ability of a computer program to realize au-
tonomous learning, reasoning, judgment and decision making by simulating human intelli-
gence. AI, one of the most impressive inventions during this century, is developing rapidly
and has been widely applied in many areas such as natural language processing (NLP),
computer vision (CV) and autopilot. Benefiting from its high efficiency, AI can be used
for classification and regression analysis of massive amounts of data generated anytime
and anywhere, thus energizing industries and promoting the development of all walks
of life greatly. With the rapid development of computer technology, machine learning
(ML), as an important branch of AI, uses data, algorithms, statistics and mathematical
optimization to imitate the way that humans learn, gradually improving its accuracy and
achieving artificial intelligence. Due to the advent of the big data era and increasingly
strong supercomputing capabilities, ML is becoming more and more popular and has been
successfully implemented in industry, agriculture, medicine, environmental protection,
scientific research and other fields.

The WWT process mainly consists of water quality monitoring, laboratory-scale re-
search and process design. AI models are becoming more and more popular in wastewater-
related fields, especially in recent years (see Figure 1), and have been employed for the
prediction and optimization of the WWT process [9,10]. In previous WWT-related research,
AI models have shown very good prediction and optimization performances [11], and have
been successfully applied to WWT process design [10,12], water quality monitoring [13,14],
WWT process parameters optimization [15,16] and WWT process performance prediction [17,18].
These pieces of research have demonstrated that an AI model, as a powerful tool, has
achieved great success in the applications of WWT-related fields. However, most of the
review works of AI applications in WWT focus on some technique or process design aspects
of WWT, such as adsorption processes, membrane bioreactors, membrane processes and
WWTP. A comprehensive review of AI applications in the WWT process involving water
quality monitoring, laboratory studies and real process design has rarely been seen until
now. Additionally, there are few review articles available, which comprehensively introduce
the commonly used AI models in WWT and summarize their advantages, disadvantages
and proposals.

In this review, an overview of the literature on the applications of AI models and smart
technologies, with a special focus on most ML in WWT, is presented. This review is not
intended to cover all the applications of AI, ML and smart technologies in WWT, but rather
to summarize the key findings of these important published works and analyze future
development trends of AI in WWT. The WWT-related applications are mainly concentrated
in the modeling, prediction and optimization of water and wastewater treatment processes,
containing water quality monitoring, laboratory-scale research and process design. The
remainder of this review is organized as follows: Section 2 systematically introduces the
commonly used AI models in WWT and summarizes the strengths and weaknesses of each
model. Section 3 outlines the applications of AI models in WWT, including water quality
monitoring for data acquisition, laboratory-scale research and process design. Section 4
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presents challenges and future perspectives of AI applications in WWT. Finally, Section 5
ends with a conclusion.

Figure 1. Number of publications related to artificial intelligence in wastewater. Number of publica-

tions was obtained by using Elsevier’s Scopus database with queries TITLE-ABS-KEY (terms). Inset:

network visualization of research topics related to artificial intelligence in wastewater, generated by

VOSviewer based on keywords.

2. AI Models

The most commonly used AI models for WWT in the literature are shown in Figure 2.
These models used for prediction and optimization can be classified into three main categories:
Artificial Neural Network (ANN), Machine Learning (ML) and Search Algorithm (SA).

Figure 2. Classification of AI models for WWT.
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2.1. Artificial Neural Network (ANN)

ANN is a mathematical model that imitates the behavioral characteristics of a biolog-
ical neural network (NN) to process information. In ANN models, unit nodes are used
to simulate neurons, and information processing is achieved by adjusting the weights of
interconnection among a large number of nodes (neurons) in the neural network. Usually,
ANN consists of an input layer, an output layer, and some hidden layers between the input
and output layers. In ANN, many variable weights between neurons and active functions,
such as sigmoid, tanh and ReLU functions, are used to perform complex nonlinear com-
putation [19]. As the number of hidden layers of ANN increases, ANN can build more
complex nonlinear models and its expression ability enhances. Thus, ANN can be trained
to learn complex nonlinear relationships between inputs and outputs by constructing and
optimizing loss functions [20]. The most commonly used ANN models mainly include Re-
current Neural Networks (RNNs), Convolutional Neural Networks (CNNs), Fuzzy Neural
Networks (FNNs) and Deep Neural Networks (DNNs). The basic architectures of ANN,
RNN, CNN, FNN and DNN models are shown in Figure 3, where Figure 3a displays an
ANN architecture, including neurons represented by the circles; an input layer fed by input
variables 1, 2, . . ., n; two hidden layers in the middle; and an output layer with output
variables 1, 2, . . ., n. Next, we will present a brief introduction of these ANN models.

Figure 3. A basic architecture of ANN models. (a) ANN; (b) RNN; (c) CNN; (d) FNN; (e) DNN.

2.1.1. Recurrent Neural Network (RNN)

RNN is a class of NN with feedback connections that takes sequence data as inputs
and makes recursion in the evolution direction of the sequence. RNN has the abilities
of memory, parameter sharing and Turing completeness, so it has certain advantages in
learning the nonlinear characteristics of time series problems. The most commonly used
RNN is long short-term memory (LSTM), which solves the gradient disappearance problem
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in traditional RNN by adding additional gated units [21]. RNN achieves great success in the
applications of water and WWT, water quality management and water-based agriculture.
A simple RNN architecture is shown in Figure 3b, where the output of the hidden layer is
stored in the memory “W”, which can be considered as another input in the RNN.

2.1.2. Convolutional Neural Network (CNN)

CNN is a class of Feedforward Neural Networks with convolutional computation
and deep structure. It is one of the representative algorithms of deep learning (DL) with
representation learning ability and has been widely used in computer vision, natural
language processing and other fields. CNN extracts the complex features of input images
through the convolutional layers, reduces the feature dimension through the pooling layers
and, finally, realizes the task of classification or regression through the fully connected
layers [22]. Figure 3c depicts a typical CNN architecture, which consists of input, output,
convolutional, pooling and fully connected layers.

2.1.3. Fuzzy Neural Network (FNN)

FNN is a hybrid NN model that combines the advantages of fuzzy logic and ANN to
handle problems with uncertainty or ambiguity. FNN uses fuzzy logic reasoning to process
the input data and then applies ANN to train and output the results. FNN has a similar
structure to traditional NN, but it uses fuzzy logic (membership function, fuzzy inference
and normalization) to describe the fuzzy relationship between inputs and outputs, as well
as the connection weights among neurons. A typical FNN architecture, including input,
membership function, fuzzy inference, normalized and output layers, is shown in Figure 3d.
FNN has some advantages in solving the problems that are difficult for traditional NN, and
has been widely used in pattern recognition, control system, predictive analysis and so on.

2.1.4. Deep Neural Network (DNN)

DNN is a type of ANN with multiple hidden layers between the input and output
layers. The deep architecture of DNN enables it to learn hierarchical representations of data,
where higher-level features are learned by combining lower-level features in successive
layers. Similar to other neural networks, DNN consists of more hidden layers and neurons
and has been widely used for learning highly nonlinear mappings from inputs to outputs
or capturing complex patterns in data. However, DNN needs a large amount of data to
train because of the complex network architecture, which makes training difficult and
computation expensive. Figure 3e displays a common DNN architecture with input, output
and multiple hidden layers.

2.2. Machine Learning (ML)

ML is a subfield of AI that focuses on the development of algorithms and statis-
tical models, and enables computer systems to automatically learn from data without
being explicitly programmed [23]. The primary goal of ML is to build predictive mod-
els that can make accurate predictions or decisions based on what it has learned from
data [24]. The most commonly used ML models include Principal Component Analysis
(PCA), Decision Tree (DT), Support Vector Machine (SVM), Particle Swarm Optimiza-
tion (PSO), Random Forest (RF), K-Nearest Neighbor (KNN), Self-Organizing Map (SOM)
and Adaptive-Network-Based Fuzzy Inference System (ANFIS). Figures 4 and 5 present
a schematic diagram of ML models, including PCA, DT, SVM and PSO and RF, SOM, KNN
and ANFIS, respectively.
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Figure 4. A schematic diagram of ML models. (a) PCA; (b) DT; (c) SVM; (d) PSO.

Figure 5. A schematic diagram of ML models. (a) RF; (b) SOM; (c) KNN; (d) ANFIS.

2.2.1. Principal Component Analysis (PCA)

PCA is a simple multivariate statistical machine learning algorithm and a commonly
used data dimensionality reduction technique that can convert high-dimensional data
to low-dimensional data while retaining most of the original data information by an
orthogonal transformation [25]. It extracts some of the largest principal components based
on the variances of variables for a better understanding of the system, which are orthogonal
to each other. PCA is widely used in areas such as data clustering, image processing,
natural language processing, noise filtering and other fields. A schematic diagram of PCA
is presented in Figure 4a, where “PC1” and “PC2” denote the first and second principal
components of datasets, respectively.
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2.2.2. Decision Tree (DT)

DT is a common ML algorithm that can be used for classification and regression
problems. DT divides the datasets into different subsets, and each subset is further divided
according to the value of a certain feature. This process can be regarded as the construction
of a tree with root, intermediate and leaf nodes, where each node represents a feature. Each
branch represents the value of the feature, and every leaf node denotes the real classification
or regression result [26]. DT is easy to understand and interpret, and can handle missing
data, outliers and nonlinear relationships with high accuracy. It can also be used for feature
selection, but it is easy to overfit, especially for higher-dimensional datasets. Figure 4b
exhibits a typical DT architecture with branches and root, intermediate and leaf nodes.

2.2.3. Support Vector Machine (SVM)

SVM is a commonly used ML algorithm for classification and regression problems. It
maps data to a higher dimensional feature space using kernel functions, such as polynomial
kernel and radial basis kernel functions. It then searches an optimal hyperplane that
separates different categories of data in the feature space based on the greatest distance from
the nearest data point to the hyperplane [27]. SVM can deal with high-dimensional data
and nonlinear relationships, and avoid the problem of local optimal solutions. However,
it is inefficient for big datasets, sensitive to noise and outliers and may have difficulty in
selecting suitable kernel functions and hyperparameters. Figure 4c displays an example of
SVM for classification, where the solid line is a hyperplane acting as a decision boundary
and the two parallel dashed lines represent spacing boundaries.

2.2.4. Particle Swarm Optimization (PSO)

PSO is a commonly used optimization algorithm for solving complex optimization
problems. It imitates the swarm behavior of biological populations, such as birds or fishes,
by constantly adjusting the individual position and velocity to search the optimal solutions.
In each iteration of the algorithm, each individual represented by a particle updates its
position and velocity and moves to the best-known position based on the optimal position
in the population and the defined rule [28]. PSO can deal with various complex nonlinear
problems and avoid falling into local optimal solutions, but it is sensitive to the initial
conditions of the problem, resulting in the requirement of running many times to obtain
good results. A schematic diagram of PSO to obtain the global optimal solution is shown
in Figure 4d.

2.2.5. Random Forest (RF)

RF is an integrated ML algorithm and is mainly used for classification and regression
problems. Its main idea is to improve the accuracy and stability of the model by integrating
multiple DTs on data samples. In RF, to improve the diversity of the model, each DT is
a basic classifier that is trained on a random subset, usually randomly drawn from the
original datasets. The final classification or optimization is obtained by voting or averaging
the results of multiple DTs [29]. RF can deal with high-dimensional data and complex
nonlinear problems, and avoid overfitting. However, it may be sensitive to certain noises
and outliers and requires more computing time and resources to train, especially under the
condition of high tree density. Figure 5a depicts a schematic diagram of RF for classification
by integrating n DTs.

2.2.6. Self-Organizing Map (SOM)

SOM is a commonly used ML algorithm for clustering and dimensionality reduction
and only consists of input and output layers. It projects high-dimensional input data into
a low-dimensional space and associates similar input data through a competitive process
while preserving the topology of the data. SOM, as an unsupervised ML method, can
reduce the dimensionality of complex datasets in a low-dimensional mapping space, which
makes it easier to visualize and classify data points [30]. It is an effective visualization
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method to help understand high-dimensional data and has been widely used in data visu-
alization, clustering, classification and other fields owing to its simplicity and practicality.
A schematic diagram of SOM is presented in Figure 5b.

2.2.7. K-Nearest Neighbor (KNN)

KNN is a simple and commonly used ML algorithm used for classification and re-
gression. It predicts the label of a new data point according to the label of K neighbors
closest to the new data point in the training datasets. KNN has the ability to deal with
complex nonlinear relationships between inputs and outputs, adjust the complexity of the
model adaptively and adapt to various data types using different distance measurements.
However, it may be sensitive to high-dimensional datasets and noise, and computation-
ally expensive for big datasets. Figure 5c displays an example of KNN before and after
classification for the new data (solid red circle) when K = 3 and K = 5.

2.2.8. Adaptive-Network-Based Fuzzy Inference System (ANFIS)

ANFIS is a new hybrid intelligent inference system based on fuzzy logic and neural
network for regression, classification and prediction. It effectively combines the fuzzy
inference capacity of fuzzy logic with the learning ability of neural networks to realize the
adaptive learning of fuzzy inference systems [31]. ANFIS and FNN have some similarities,
but the network structure, computational method and application scope are different.
A typical ANFIS architecture with input, membership function, firing strength calculation,
normalized, linear combination and output layers is shown in Figure 5d. ANFIS can be
used for modeling nonlinear and multivariable complex systems and has been widely
applied in the areas of fuzzy control, prediction and classification.

2.3. Search Algorithm (SA)

Except for ANN and ML, SAs are also commonly used AI models, including Genetic
Algorithm (GA) and Genetic Programming (GP), as shown in Figure 6. A brief introduction
to GA and GP is given in the following.

Figure 6. A schematic diagram of SA models. (a) GA; (b) GP.

2.3.1. Genetic Algorithm (GA)

GA is a commonly used search and optimization method based on the principle
of biological evolution. It imitates the genetic process in nature and obtains excellent
individuals better adapted to the environment through genetic manipulation. The genetic
manipulation mainly includes selection, crossover and mutation, as depicted in Figure 6a.
GA can search the optimal solution in multidimensional spaces and is not limited by the
local optimal solution. Thus, it has good global search ability and strong adaptability and
can deal with complex nonlinear optimization problems [32]. GA is widely applied in ML,
AI, control systems, optimization design and other fields.
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2.3.2. Genetic Programming (GP)

GP is an evolutionary computing technique based on GA that automates the generation
and selection of computer programming inspired by biological evolutionary processes to
perform regression, classification and optimization. Unlike other ML algorithms, GP is
performed automatically by randomly generating an initial population and then using
GA to evolve [33]. A schematic diagram of GP is displayed in Figure 6b. GP has good
adaptability and generalization ability, and is often used to solve problems that are highly
nonlinear or have no explicit analytic form, such as image recognition and prediction.

In fact, each AI model has advantages, disadvantages and application scopes. Table 1
lists the commonly used AI models for WWT, their purposes, advantages and disadvan-
tages. An appropriate AI model should be selected carefully depending on its advantages
and the characteristics of the problem to be solved, so as to get the best results. Meanwhile,
Table 2 summarizes the commonly used activation functions of AI models for WWT. The
expression and output range of every activation function are presented, and the frequency
of use in the literature is marked with the blue symbol “∗”. The more symbols there are,
the higher frequency of its use. Additionally, we present a general flow chart in Figure 7 to
illustrate how AI models are applied in WWT. To evaluate the performance of AI models,
some commonly used indicators are required, for example, mean squared error (MSE), root
mean squared error (RMSE), sum of squared error (SSE), mean absolute error (MAE) and
coefficient of determination (R2). The definitions and details of these common indicators
are omitted here; interested readers can refer to the literature [34].

Table 1. Commonly used AI models for WWT, their purposes, advantages and disadvantages.

AI Models Purposes Advantages Disadvantages Ref.

RNN Regression Suitable for time series modeling Computationally expensive [35]
Classification No limit to the length of inputs Training difficulty
Prediction

CNN Regression Suitable for image-related modeling Computationally expensive [36]
Classification Extracting important features of images Training difficulty
Segmentation

FNN Regression Easy to implement and interpret Computationally expensive [37]
Classification Suitable for complex nonlinear problems Complex model architecture
Prediction

DNN Regression Accurate and fast prediction Computationally expensive [36]
Classification Suitable for complex nonlinear problems Training difficulty
Prediction Easy to overfit

PCA Clustering Simple and easy to implement May lose some important information [38]
Reduces dimensionality Sensitive to noise data

DT Regression Easy to understand, interpret and classify Low training efficiency -
Classification No need to preprocess Not suitable for imbalanced datasets
Optimization

SVM Regression Can handle high-dimensional problems Computationally expensive [37]
Classification Suitable for complex separable datasets Not suitable for larger datasets
Prediction

PSO Regression Simple and easy to use Sensitive to initial conditions [39]
Classification High computational efficiency Not suitable for discrete problems
Clustering Strong universality

RF Regression Simple and easy to use Need dense decision trees to guarantee [36]
Classification Suitable for high-dimensional datasets accuracy and robustness
Prediction Strong generalization Computationally expensive
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Table 1. Cont.

AI Models Purposes Advantages Disadvantages Ref.

KNN Regression Simple and easy to use Computationally expensive [36]
Classification Suitable for nonlinear classification High memory consumption

SOM Clustering Suitable for high-dimensional datasets High computational complexity [40]
Reduces dimension Not suitable for missing datasets

ANFIS Regression Combine the advantages of ANN and FIS Computationally expensive [37]
Classification Use determination and fuzzy data Hard to define appropriate
Prediction membership function

GA Regression Suitable for complex nonlinear problems Difficult to train [39]
Classification Support multi-objective optimization Poor local search ability
Optimization Efficient and flexible Not suitable for high dimensions

GP Regression Suitable for complex optimization problems Many control variables -
Classification Optimize by automatic search Converge slowly
Optimization Not suitable for high dimensions

Table 2. Commonly used activation function of AI models for WWT. The blue symbol “∗” represents

the frequency of use in the literature.

Activation Function Expression Output Range Ref.

Sigmoid ∗∗∗ f (x) = 1
1+e−x (0, 1) [41]

Tanh ∗∗∗ f (x) = tanh(x) (−1, 1) [42]

ReLU ∗∗ f (x) = max(0, x) [0,+∞) [36]

Leaky ReLU ∗ f (x) = max(¸x, x) (−∞,+∞) [43]

ELU ∗∗
f (x) =

{

a(ex − 1), x < 0

x, x ≥ 0
(−a,+∞) [44]

Heaviside ∗
f (x) =

{

0, x < T

1, x ≥ T
[0, 1] [45,46]

Ramp ∗

f (x) =











0, x < T1
x−T1
T2−T1

, T1 ≤ x ≤ T2

1, x ≥ T2

[0, 1] [47]

Linear ∗ f (x) = x (−∞,+∞) [48]

Figure 7. Flow chart for the applications of AI models in WWT.
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2.4. Hybrid AI Models

Hybrid AI models can take full advantage of individual models to improve the
prediction or optimization performance of AI models by integrating two or more of the
above AI models. As shown in Table 1, every AI model has some drawbacks used for
WWT. Hybrid AI models overcome the major disadvantages of a single AI model and, thus,
show stronger learning and prediction abilities in dealing with more complex nonlinear
problems. In the literature, GA, PSO, RNN and SVM are the commonly used AI models
for combination with other AI models to obtain a more effective hybrid AI model with
better performance, such as GA-SVR, GA-ANN, GA-FNN, PSO-RNN, PSO-SVM, PSO-
ANN, ANN-GANN and SVM-SA [49]. Hybrid AI models have shown their great potential
in solving new or difficult environmental problems related to sewage and are receiving
increasing attention from researchers [50–52].

3. Applications of AI Models in WWT

AI models along with the Internet of Things (IoT) framework and conventional meth-
ods are helpful for the design of smart WWT systems and the reuse of sewage [53]. An AI
model is a useful and powerful tool for the modeling, prediction and optimization of the
WWT process and has been widely applied in various aspects of WWT, such as the removal
of dyes, heavy metals, nutrients, organics, solids, microbial contamination, drugs and pesti-
cides from water [49,54–56]. From the viewpoint of research scale, the applications of AI
models are mainly in laboratory-scale research and process design. In practical applications,
process design usually consists of process parameter optimization and process performance
prediction. In optimization and prediction, a large amount of data is required to establish
and train AI models, which can be achieved by monitoring water quality.

3.1. Water Quality Monitoring for Data Acquisition

In the applications of AI models in WWT, water quality monitoring is an important
method to obtain water quality parameters or data. A lot of data are available by using
sensors to continuously monitor influent and effluent water quality [34]. Although different
numbers of datasets as inputs are employed for different studies, the percentage of data for
training and testing AI models almost remains the same. Most studies use 60–80% data
for training and the remaining data for testing. Some researchers have made an attempt
to design various sensors to enable rapid and accurate real-time monitoring and WWT
process automation by real-time sensing, data analysis and online controls [57–60]. For the
monitoring of influent water, some water quality parameters, such as BOD, COD, pH, DO,
flow rate, temperature and initial pollutant concentration, are easily obtained and used for
the inputs of AI models, while for the monitoring of effluent water, some water quality
parameters, such as effluent BOD, COD, pH, DO and pollutant concentration, are usually
used to evaluate the effect of WWT or the performance of wastewater treatment plants
(WWTPs).

An increasing number of measured data and AI models, as well as multivariate sta-
tistical methods, have made data-driven modeling and real-time prediction attractive.
Post et al. [61] combined a CNN model with laser-induced Raman and fluorescence spec-
troscopy (LIRFS) to achieve real-time monitoring of the micropollutants of WWTP with
a correlation coefficient of R2 = 0.74 for all samples. The results show that this method
can lead to high-precision measurement results, reach detection limits and detect mi-
cropollutants that cannot be monitored using the monitoring methods of WWTPs. The
combination of sensitive fluorescence measurements with very specific Raman measure-
ments supplemented with AI is a promising real-time monitoring tool for image recognition
in WWT-related fields, such as microbiological water quality tests, micropollutants iden-
tifications and even device-specific adjustments in WWTP management. Based on PCA,
ANN and multivariate statistical process control, Lee et al. [38] developed a real-time re-
mote monitoring system for WWTP to monitor operating statuses and provided the key
information needed for efficient operation from the experts. Mustafa et al. [62] reviewed
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the applications of IoT and AI models in water quality monitoring and prediction with
high accuracy, which can provide safe water quality services for users and an important
basis for government water quality management decision making. For water quality
monitoring using soft sensors, a literature review was performed by Haimi et al. [63] to
summarize the applications of data-derived soft sensors for the monitoring and online
prediction of biological WWTP. Ching, So and Morck [64] also conducted a systematic
review of advances in soft sensors for the online monitoring of WWTP. Schneider et al. [65]
performed an experimental study to identify sensors to monitor on-site WWTP without
sensor maintenance over one year and showed that robust soft sensors can be reasonably
designed to meet real-time monitoring tasks while reducing the maintenance frequency
dramatically.

3.2. Laboratory-Scale Research

Owing to low cost, short experiment period, security controllability, easy operation
and good repeatability, laboratory-scale research has been an important tool for developing
new process designs and WWT technologies. We conclude the common applications of
AI models for laboratory-scale research in Table 3. In laboratory-scale research, the appli-
cations of AI models in WWT mainly focus on the design and optimization of membrane
processes or bioreactors. Some researchers have made comprehensive reviews of the appli-
cations of AI models for WWT using membrane processes or membrane bioreactors (MBRs)
in recent studies [66–68]. MBR is an efficient and useful wastewater treatment process
combining biological (microbial) treatment with membrane filtration. It is a hybrid system
essentially that integrates a conventional biological treatment system and critical physical
liquid–solid separation functions achieved by membrane filtration equipment. Because
MBR combines the technical superiorities of membrane-based physical separation and
microorganism-based biodegradation, it has several advantages over the traditional acti-
vated sludge process, such as higher biomass concentration, less sludge production, shorter
hydraulic retention time (HRT), eliminating the need for secondary clarifiers, smaller plant
space requirement and improved effluent quality [69]. Thus, as one of the most important
innovative technologies in WWT, MBR is an efficient tool for sustainable wastewater man-
agement and has been widely used for the treatment of various municipal and industrial
wastewater. Recently, Rahman et al. [70] performed a review of the historical advancement
in MBR technology toward sustainable wastewater management. Tomczak and Gryta [71]
outlined energy-efficient anaerobic MBR (AnMBR) technology for WWT and demonstrated
that AnMBRs have lower energy demand than typical WWTPs.

A variety of anaerobic [72] and aerobic [73] MBRs have been developed and applied in
WWT, but a main barrier for the widespread application of membrane processes or MBRs
is membrane fouling since it significantly decreases the performance and lifespan of mem-
branes, resulting in increased maintenance and operating costs. Membrane fouling induces
a decrease in the permeability of membranes, and is a complex and inevitable phenomenon,
which is attributed to the accumulation and adsorption of the pollutants in wastewater
on the membrane surface and inside the membrane pores. Overall, membrane fouling
is the key impact factor limiting the performance and cost of membrane processes, and
researchers have been trying to develop efficient and sustainable fouling control strategies.
Tomczak, Grubecki and Gryta [74] proposed a method for membrane fouling control in an
MBR using 1% NaOH solutions and demonstrated that the method is effective in restoring
the initial membrane performance. In the membrane processes or MBR-related application
studies, how to control membrane fouling and optimize MBR performance effectively and
economically are two of the most central questions for the rapid commercialization of and
large-scale applications in WWT [75–77].
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For the applications of AI models to predict or control membrane fouling, the com-
monly studied membrane types are forward osmosis, reverse osmosis, nanofiltration,
ultrafiltration and microfiltration [78]. Chen et al. [79] applied a radial basis function
(RBF) ANN model to quantify interfacial energy with a randomly rough membrane sur-
face in the membrane fouling process. They showed that the RBF-ANN model can well
capture the complex relationships between interfacial energy and key influencing factors.
Jawad et al. [80] adopted an ANN model to predict permeate flux for a lab-scale forward
osmosis process with high accuracy, R2 = 0.973. The results indicate that the ANN model
performs better than the MLP model, and a lower number of hidden layers and a higher
number of neurons are helpful to improve the accuracy of the ANN model. Subsequently,
they presented a hybrid ANN-RSM model to further simulate the forward osmosis pro-
cess and predict membrane flux [81]. In the developed hybrid model, the ANN model
predicting the membrane flux is used for the experimental design, while the RSM model
is used for optimization. The prediction performance for the ANN and RSM models are
R2 = 0.98036 and 0.9408, respectively.

For the applications of AI models to optimize MBR performance, various operating
parameters, such as temperature, pH, DO, salinity, HRT, pollution load, BOD, COD and pol-
lutant concentration, are considered to determine the optimum processing condition [82].
Zaghloul et al. [83] proposed a five-stage ML model to simulate and predict the behaviors
of aerobic granular sludge (AGS) reactors using 475 days of data collected from three
lab-based reactors and adopted an ensemble of ANN, SVR and ANFIS models to improve
the predictive performance. They found the model can forecast the behaviors of AGS
reactors with average R2= 95.7%, RMSE = 0.032 and MAPE = 3.7%. Ren et al. [84] used
a Backpropagation Neural Network (BPNN) model to simulate the removal of CODfilt
and COD by conducting a pilot-scale submerged MBR to treat high-strength Chinese tra-
ditional medicine wastewater and confirmed that the model can accurately predict the
removal rates and help to obtain the optimum operational conditions. Cai et al. [85]
conducted an aerobic–anaerobic micro-sludge MBR (O-AMSMBR) to study the effect of
pH on pollutant removal performance of a reactor using Wavelet Neural Network (WNN)
and BPNN models and showed that pH is a key factor affecting the COD and TN removal
efficiencies of O-AMSMBR. To optimize the processing efficiency of MBRs, they further
studied the effects of various ecological factors on effluent marine domestic sewage by
implementing an air-lift multilevel circulation MBR and analyzed their impacts on the
O-AMSMBR performance using the BPNN model [86]. The results show that the order of
relative importance for the ecological factors is pH ≈ MLSS > HRT > COD, which indicates
that pH is significant and should be considered in implementing AI models to evaluate the
effectiveness of MBR systems.
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Table 3. Applications of AI models for laboratory-scale research.

AI Model Used Input Variables Output Variables Remarks Reactor Type Ref.

ANN, ANFIS, Influent NH4 − N, PO3−
4 , Effluent COD, New multi-stage ML model for AGS reactor [83]

SVM pH, OLR, HRT, etc. NH4 − N and better prediction of AGS reactor

PO3−
4

performance. An ensemble of ML

for more accurate predictions.

ANN COD, MLSS, MLVSS, Transmembrane New ANN model to accurately Anoxic– [87]
pH, DO, Alkalinity, TN, pressure (TMP) predict membrane fouling. aerobic
TP, NO−

3 − N, NH4 − N Identify an optimal parameter set MBR
to predict TMP using ANN.

ANN, ANFIS Influent COD, pH, oil Biogas New ANN and ANFIS models to UASB [88]
and grease removal, etc. production predict biogas production from

spearmint essential oil WWT.
Obtain the best BP-ANN and

ANFIS topologies.

ANN HRT, temperature, Methane ANN model to forecast biogas Anaerobic [89]
composition and production production and identify the reactor

chemical dose optimum process conditions.
Chemical treatment enhances
anaerobic digestion efficiency.

ANN Volatile solid, pH, Biogas ANN model to predict biogas Anaerobic [90]
organic load rate, HRT, production production from food, fruits and reactor

temperature, reactor vegetable wastes. Assess different
volume ANN topologies and build database.

ANN MLSS concentration, TMP and COD ANN model to simulate and MBR [91]
HRT and time removal predict TMP and COD removal

percentage percentage of MBR. Protein in
biofilm/cake EPS is the dominant

fouling factor.

PCA, fuzzy TMP Principal PCA and FC to assess membrane MBR [92]
clustering (FC) components of fouling. PCA-FC model for

TMP membrane fouling control.
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Table 3. Cont.

AI Model Used Input Variables Output Variables Remarks Reactor Type Ref.

ANN Flux, aeration ratio, TMP Mathematical and ANN models Intermittently [93]
initial TMP, operating to predict membrane fouling. aerated MBR

time, etc. Mathematical model has a better
stability and ANN has a better

prediction performance.

Recurrent Influent COD, NH4 − N, Membrane Intelligent detecting system MBR [94]
fuzzy NN pH, BOD, SS, TP, etc. permeability to evaluate MBR performance.

Suitable for online detecting
membrane fouling.

MLP, ANN, Time, TSS, influent TMP or GA-ANN model to evaluate membrane Submerged [95]
GA COD, SRT, MLSS permeability fouling. GA-ANN predicts TMP and MBR

permeability accurately.

ANN Influent concentrations Effluent New ANN model to predict biofilm Biofilm [96]
of COD, NH4 − N and concentrations of system performance. The new model system

TN, etc. COD, NH4 − N, TN performs the best.

WNN, BPNN pH, sludge loading, Effluent WNN and BPNN models to study O − AMSMBR [85]
salinity, COD or TN concentrations of the effect of pH on pollutant
volume loading rate COD or TN removal. pH is the key factor

for biodegradation.

BPNN Influent concentrations Effluent New BPNN model to simulate AnMBR AnMBR [97]
of COD, BOD, etc. concentrations performance. AnMBR can treat

of COD, etc. pharmaceutical wastewater efficiently.

ANN, GA Conductivity, organic COD removal New ANN-GA model to predict and UASB [98]
loading rate, efficiency optimize COD removal efficiency.

temperature
ANN-GA improves reactor

performance.



Sustainability 2023, 15, 13557 16 of 28

3.3. Process Design

WWT process involves complex process design and operating conditions, and AI
models have shown great advantages in minimizing or reducing the complexities of the
WWT process. AI models can effectively and easily establish a complex relationship
between the various input and output variables. The commonly used input variables
are time, temperature, pH, initial concentration of pollutants and influent water quality
parameters, and the output variables are mainly the removal efficiency and the adsorption
efficiency of contaminants or effluent water quality parameters. AI models have been
successfully applied in various aspects of WWT, such as the prediction of effluent water
quality and WWT performance, as well as the optimization of energy consumption and
operating parameters [96]. From the perspective of process design of WWT, the applications
of AI models are concentrated in the optimization of process parameters and the prediction
of process performance [99].

3.3.1. Process Parameters Optimization

The main purpose of process parameter optimization is to reduce costs and increase the
efficiency of WWT. Table 4 summarizes the applications of AI models for the optimization
of process parameters. Nayak et al. [100] used a hybrid ANN-GA model to predict
the optimal process conditions for enhancing the biomass of the green microalga in an
algal biorefinery. They found 4-12-1 topology is the optimal network architecture with
a maximum correlation coefficient R = 0.9947 and minimum MSE, and these parameters
improved the algal biomass productivity by about 57% and had a CO2 sequestration rate
of 578.1 ± 23.1 mg L−1 d−1 and a COD reduction of 95.9 ± 2.4%. Qi et al. [39] applied
RSM, ANN-PSO and ANN-GA models to study the decontamination of methylene blue
(MB) from simulated wastewater using mesoporous rGO/Fe/Co nanohybrids. The results
show that the ANN-PSO model has the best performance among these models in the
prediction of the optimum conditions for decontamination efficiency. The mesoporous
nanohybrids could be used as a low-cost and fast decontaminant material to treat organic
contaminants or other pollutants in wastewater. Martín de la Vega and Jaramillo-Morán [40]
adopted SOM to identify four key parameters of a municipal WWTP running by monitoring
Oxidation–Reduction Potential (ORP) and DO based on three thousand two hundred
aeration–non-aeration cycles. This method can improve the removal efficiency of nutrients
in WWTP.

For process parameter optimization, Picos-Benítez et al. [101] utilized an ANN-GA
model to predict the treatment performance of sulfate wastewaters with Bromophenol
blue dye using an electro-oxidation (EO) process and obtained the optimum operational
conditions. They found that the AI model is a powerful tool in designing and control-
ling the WWT processes. For MB WWT, ANN and ANFIS models were employed by
Aghilesh et al. [102] to obtain the optimum conditions for MB removal using low-cost
agricultural waste (sugarcane bagasse and peanut hulls). They also performed Fourier
Transform Infra-Red (FTIR) spectral analysis to confirm the biosorption and the distin-
guished prediction performance of these AI models for biosorption. In fact, FTIR is a useful
spectroscopic technique and has been widely used for the detection and analysis of pollu-
tants, such as microplastics in water [103], table salts [104] and nitrates from agricultural
fertilizers in soil [105,106]. FTIR spectra can be used to analyze the chemical composition
of pollutants and identify functional groups, providing important information about them
present in compounds, complex substances and bio-sorbent surfaces, but spectra interpre-
tation is time-consuming. To reduce the time to analyze functional groups so as to facilitate
the interpretation of FTIR spectra, Enders et al. [107] developed the first generalizable
model based on CNN to identify functional groups in gas-phase FTIR spectra. The results
demonstrate that CNN models are effective at identifying spectral features and can be
extended to other micropollutants or chemical identification application fields with a lot of
spectral examples. Overall, image-based AI models coupled with spectroscopy techniques,
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such as FTIR, SEM and Raman spectroscopy, are useful for the identification and detection
of contaminants, especially micropollutants in water-related fields.

For a WWT system, Li et al. [43] proposed a hybrid deep leaning CLSTMA model
based on CNN, LSTM and AM to monitor and model the water quality of a paper industrial
WWT system for cleaner production. Compared with CNN, LSTM and CLSTM models, the
CLSTMA model has better performance in monitoring and modeling water quality. An in-
telligent WWT system based on AI models and sensors was presented by Miao et al. [41] to
assist in managing sewage treatment. A Gated Recurrent Unit (GRU) model performs better
than LSTM and SVR models, and the intelligent WWT system can be extended to small-
scale sewage industries in sustainable cities. Rodríguez-Rangel et al. [36] also explored
five AI models to simulate and predict the biomass production of carbohydrates in WWT
systems, considering the interactions of nutrients, carbon, biomass growth and population.
The results indicate that the CNN-1D model has better performance than other models
and can approximate system dynamics. For the study of WWTP, Hwangbo et al. [42] used
DNN and LSTM to predict the N2O emission rate and identify the key parameters affecting
the characteristics of N2O high emission. They found that the LSTM model performs better
than the DNN model, and a hybrid model combining mechanistic with DL models is
helpful in quantitatively describing and understanding complex N2O emission dynamics
from WWTPs. Zhu, Jiang and Feng [37] also proposed an upgraded feedforward NN with
the least square SVM (FFNN-LSSVM) method to forecast the effluent BOD/NH3-N of a
WWTP. The proposed model has high predictive accuracy, limited computation duration
and a simple calculation mechanism, and performs better than existing techniques in
wastewater quality prediction.

Table 4. Applications of AI models for the optimization of process parameters.

AI Models Used Input Variables Output Variables Remarks Pollution Type Ref.

ANN, GA Light intensity, Biomass New ANN-GA model to Green [100]
photoperiod, productivity predict optimal process microalga
temperature and conditions of an algal
initial pH biorefinery. Productivity

improved by 57%.

ANN, GA, PSO Initial MB Decontamination ANN-PSO model to predict MB [39]
concentration, efficiency the optimum process conditions.
temperature, pH rGO/Fe/Co nanohybrids can treat
and contact time organic contaminants effectively.

SOM COD, BOD, Organic overload, SOM model to optimize working Biological [40]
TSS, TN, working conditions conditions. Obtain key parameters nutrient
TP, etc. and working conditions of

biological nutrient removal.

ANN, GA Electrolysis time, Discoloration ANN-GA model to optimize Dye [101]
flow, current efficiency process conditions. AI can
density, pH, dye design, control and
concentration operate EO process.

ANN, ANFIS Temperature, pH, Removal AI model to predict biosorption MB [102]
bio-sorbent and efficiency of MB and obtain optimum conditions.
dye concentration Agricultural waste for effective

biosorption of textile wastewater.

CNN, LSTM, AM Influent COD, Effluent COD and New hybrid CLSTMA model to Paper [43]
SS, flux, DO, pH SS monitor water quality for cleaner wastewater
and temperature production with low cost.

SVR, LSTM, GRU Inflow and Outflow COD Intelligent WWT system based City [41]
outflow COD on ML and sensors. Applied it sewage
temperature to a fine chemical plant.
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Table 4. Cont.

AI Models Used Input Variables Output Variables Remarks Pollution Type Ref.

DNN, LSTM DO, NO−
3 − N, N2O concentration Integrating mechanistic and N2O [42]

NH+
4 − N, influent DL models is very useful for

and air flow rates, understanding N2O emission
temperature dynamics.

ANN, CNN, LSTM Mixed liquor, Carbohydrate Used 5 AI models to forecast Carbohydrate [36]
KNN, RF biomass, green content biomass production. CNN-1D

algae, etc. model performs the best.

ANN, SVM, FNN Influent water Effluent New FFNN-LSSVM model to NH3-N [37]
quality, flow rate, BOD/NH3-N forecast water quality and nitrogen
etc. optimize process parameters.

3.3.2. Process Performance Prediction

Process performance is an important aspect of the WWT process and has been the
focus of researchers’ attention. The common process performance predictions include
the removal efficiency of pollutants, WWTP performance, optimal process condition and
effluent quality. A brief summary of the applications of AI models for the prediction of
process performance is presented in Table 5. For the prediction of WWTP performance,
Nourani et al. [108] analyzed Nicosia WWTP performance using single AI and ensemble
models. The results show that the ANFIS model performs better than other single AI
models, and the NN ensemble model has the best prediction performance among the
ensemble models. Xie et al. [109] also combined improved Feedforward Neural Network
(IFFNN) with GA to predict the real-time effluent water quality of a WWTP in Jiangsu
Province, and found the IFFNN-GA model enhances prediction performance by 52.3%
(COD) and 72.6% (TN) compared with the traditional FFNN model. Deep cascade-forward
backpropagation (DCB) and DL time series forecasting (DLTSF) models were presented
by El-Rawy et al. [110] to predict the effluent water quality of the El-Berka WWTP and
evaluate its treatment performance.

For the removal of contaminants, Bisaria et al. [111] employed ANN and ANFIS
models to simulate the adsorption process of chlorpyrifos (CPS) using Trapa bispinosa peel
(UFBC) and validated the effectiveness of adsorption experimentally. The results illustrate
that UFBC is a sustainable and effective adsorbent with low equilibrium time and high
adsorption capacity for CPS removal. For the prediction of effluent quality, Yang et al. [112]
proposed a dynamic PCA-NARX model to predict the effluent quality and made potential
real-time adjustments for WWTP operations. The results show that the dynamic model has
better performance than static ANN models in modeling effluent quality. Nnaji et al. [113]
predicted COD and CTSS removal efficiencies from textile wastewater using complex salt–
Luffa cylindrica seed extract (CS-LCSE) as a coagulant based on RSM, ANN and ANFIS
models. The results demonstrate that the ANFIS model has the best predictive performance
with a higher R2 value (0.9997 and 0.9996 for CTSS and COD removals) and a lower MSE
value (0.0002643 and 0.0038472 for CTSS and COD removals). For the prediction of optimal
process conditions, Mahmoud et al. [114] employed an ANN model to predict the COD
removal efficiency from domestic wastewater by preparing Fe/Cu NPs under different
operating conditions. The adsorption isotherm, kinetic studies and RSM results indicate
that Fe/Cu NPs are an effective adsorbent material for COD removal, and the ANN model
is useful to explore the optimum removal condition.

More and more studies have demonstrated that the utilization of AI in WWTPs can sig-
nificantly enhance WWT efficiency and decision making, decrease environmental impacts
and improve their performance (see Table 5) because AI algorithms can optimize various
processes and operational conditions, such as temperature, pH, COD, chemical dosage, flow
control and energy consumption. This leads to more efficient resource utilization, reduced
operational costs and energy consumption, and improved overall system performance.
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Additionally, a combination of AI technologies with the use of sensors can realize real-time
monitoring and control, resulting in decreased response time, system failure risks and
human resource costs. Overall, WWTPs that utilize AI technologies have shown superior
performance compared to those without AI. The incorporation of AI enables enhanced
efficiency, real-time monitoring, predictive maintenance, data-driven decision making and
reduced environmental impact. Implementing AI in WWTPs can lead to more sustainable
and effective management of our water resources.

Besides the applications of AI models in the prediction of process performance and
the optimization of process parameters, AI models can be used in the pretreatment of
wastewater to improve the pretreatment accuracy and the adaptive control accuracy of the
system [115,116]. Some researchers have employed various AI models and their variants to
comprehensively evaluate the water quality of rivers [117], lakes [118] and reservoirs [119].

Table 5. Applications of AI models for the prediction of process performance.

AI Models Used Input Variables Output Variables Remarks Country Ref.

FFNN, ANFIS, Influent pH, BOD, Effluent BOD, Used 3 AI models to predict Nicosia Cyprus [108]
SVM COD, conductivity, COD and TN WWTP performance. NN ensemble

and TN model is more robust and reliable.

IFFNN, GA Influent water Effluent water New IFFNN-GA model to enhance China [109]
quality, quality prediction real-time prediction of WWTP effluent
flow rate, etc. at time t + 1 quality.

FFNN, LSTM Influent TSS, Effluent TSS, Different AI models to predict Egypt [110]
BOD, COD, BOD, COD, effluents and performance of WWTP.
ammonia and ammonia and Recommend DCB and DLTSF models
sulfide sulfide for evaluation and prediction.

ANN, ANFIS Contact time, Adsorption ANN and ANFIS models to predict India [111]
adsorbent dose, efficiency the adsorption capacity of CPS
pH, etc. by UFBC. New material is a sustainable

and effective adsorbent.

PCA, pH, COD, BOD, Effluent COD and New PCA-NARX model to predict China [112]
NARX NN, TN, TP, SS, NH+

4 TN effluent water. Dynamic model
ANN and chromaticity performs better than static model.

ANN, ANFIS pH, dosage and COD and CTSS ANFIS model outperforms Nigeria [113]
stirring time removal over ANN and RSM models.

efficiencies

ANN pH, NP dose, COD removal New ANN model to predict COD - [114]
contact time, etc. efficiency removal efficiency. Fe/Cu NPs

are strong absorbents.

ELM, GA, Flow rate, COD at time t KELM-SSA model performs better Iran [120]
SSA, PSO temperature, pH, than other AI modes in predicting

NH4, EC, COD at real-time water quality due to
time t − 1 the combination of SSA.

ANN, PCA Type 0041, Sludge volume ANN and multivariate statistics to South [121]
Gordonia spp., etc. index (SVI) predict sludge volume index and Africa

assess filamentous bacteria.

WNN Influent COD, Effluent COD, New WNN model can accurately evaluate China [122]
NH+

4 − N, salinity NH+
4 − N the effect of salinity and predict

pollutant removal processes.

WNN TN and COD Effluent COD, WNN model can forecast COD and TN China [123]
loading rates, TN removals and help long-term stable
HRT, pH operation of WWTP.
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Table 5. Cont.

AI Models Used Input Variables Output Variables Remarks Country Ref.

ANN, GA Time, OLR, RT, COD, TOC, ANN-GA model can predict hypersaline Malaysia [124]
TDS MLSS, oil in oily WWT processes and evaluate MBR

sludge performance.

FFNN, ANFIS, Influent BOD, Effluent BOD and AI models to predict WWTP effluent Iran [125]
SVR COD, TSS and COD at time t parameters. Using jittering and

pH, etc. ensemble models simultaneously
increases prediction accuracy.

SVM, ANFIS Influent pH, TS, Effluent Kjeldahl SVM and ANFIS models to predict India [126]
COD, etc. Nitrogen removal efficiency of Kjeldahl

concentration Nitrogen. SVM can evaluate
WWTP efficiency.

ANN pH, adsorbent Color removal ANN and other models to simulate Egypt [127]
dose, contact efficiency adsorption processes. GT-nZVI has
time, etc. a strong color removal ability for

textile wastewater.

4. Challenges and Future Perspectives

Although AI models have many advantages over traditional models and have achieved
great success in WWT-related fields demonstrated by all of the aforementioned studies,
their disadvantages and limitations hindering widespread applications in WWT should
not be ignored. The challenges and future perspectives of AI applications in WWT are
summarized as follows:

1. An AI model such as ANN can describe complex nonlinear relationships between
multiple inputs and multiple outputs, but it is a black-box and data-driven model
essentially. That is to say, the AI model just offers a mapping relationship between
inputs and outputs, but it cannot provide any mechanism information about the
problem to be studied. AI models have proven to be a powerful tool and show good
prospects in engineering applications for WWT fields; however, they have a long
way to go in scientific research. The main reason is that the underlying mechanisms
behind many WWT-related issues in the current research are still not clear. Although
the AI models used in the above studies show good performances in solving specific
problems and usually exhibit problem dependence, whether they can be applied
to other WWT-related problems and their application scopes in WWT need to be
studied. More importantly, traditional mathematical models [128], such as known
knowledge, principles and equations, are called white-box models, which elucidate
the underlying mechanisms, but have difficulty describing the complex nonlinear
relationships between inputs and outputs of AI models. Combining an AI model
(data-driven model) with a traditional mathematical model (knowledge-driven model)
can dramatically reduce data requirements and allow for easily obtaining meaningful
results [129]. The integrated black-box with white-box model is a promising tool for
the study of the underlying mechanisms of WWT systems.

2. AI models usually have low interpretation because their parameters, such as neurons,
hidden layers, weights and biases, have no physical significance, resulting in low
interpretation. Another drawback of an AI model is poor reproducibility because of
the random weights and biases [67]. Additionally, training NN, especially DNN, is
difficult; thus, it is hard to obtain the optimal network parameters. An improperly
trained NN may converge to a local minimum. Generally, NN provides different
solutions under the conditions of different network architectures and parameters.
There is no standard way to determine the best network architecture so far, which is
often problem-dependent. Trial and error seems to be the only way, but this easily
leads to overfitting or underfitting. For a particular real problem, the appropriate
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selection of AI models, inputs, outputs, model architecture and datasets is vital for the
results. How to construct AI models reasonably needs to be further studied. Moreover,
more theoretical studies on AI techniques are needed to mitigate the difficulties of
NN training, parameter optimization, poor reproducibility and low interpretation, so
as to promote the development of AI applications in WWT.

3. AI models are heavily dependent on data, and big data are required in the training
or learning process to guarantee prediction or optimization accuracy. In the WWT
applications mentioned above, AI models are applied to different WWT-related fields
and a lot of data with different formats and types have been collected, resulting
in poor data management and difficulty in reuse by other researchers. Moreover,
the data and source code used in the studies are rarely made public for various
reasons, which leads to a lack of academic transparency. This is another reason
why it is difficult to reproduce the results in the literature. Furthermore, researchers
have used some statistical methods to evaluate the accuracy or precision of their AI
models in almost every paper reviewed in this journal, such as R2, MAE, MSE, RMSE,
MAPE and SSE. The absence of open source code and data makes it difficult to fairly
compare the performance of different AI models [12]. Due to the lack of benchmarks,
standardization and fair comparison, it is hard for researchers to judge which AI
model performs better for a specific real problem. Therefore, in order to reduce
experiment costs, achieve fair comparisons and promote the widespread application
of AI models in WWT, raw data and source code are encouraged to be made public
and shared, and benchmark and standardization should be established.

5. Conclusions

This review summarizes the commonly used AI models and their applications in WWT,
ranging from water quality monitoring, laboratory-scale research to process design. AI
models are becoming more and more popular in WWT-related fields because of their strong
learning and accurate prediction abilities. They have been successfully applied to model
WWT systems, optimize process parameters, predict process performance and identify
and detect contamination. Although AI models have many advantages and have become
very useful tools for the treatment of wastewater, their disadvantages and limitations
should not be ignored. Big data demand; poor data management; low interpretability;
poor model reproducibility; and a lack of physical significance, mechanism explanation,
academic transparency, standardization and fair comparison are important obstacles to the
AI applications in relevant areas of WWT.

In order to overcome these hurdles and successfully apply AI models to WWT, math-
ematicians, biologists, engineers and computer experts should cooperate and develop
new models or innovative technologies to design optimal WWT systems. Additionally,
more studies from lab to field scales are needed to understand the complex behaviors of
WWT systems with varying effect factors and to explore the mechanisms of key problems
involved in WWT. Furthermore, hybrid AI models that integrate the advantages of two or
more AI models and the newly emerging attention-based AI models could be solutions
to complex water-treatment-related problems. The fusion of data-driven and knowledge-
driven AI models is a new and promising method that is receiving increasing attention in
WWT-related fields.
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Abbreviations

The following abbreviations are used in this manuscript:

AI Artificial Intelligence

NN Neural Network

DL Deep Learning

ANN Artificial Neural Network

ML Machine Learning

SA Search Algorithm

RNN Recurrent Neural Network

CNN Convoluted Neural Network

FNN Fuzzy Neural Network

DNN Deep Neural Network

PCA Principal Component Analysis

DT Decision Tree

SVM Support Vector Machine

PSO Particle Swarm Optimization

RF Random Forest

KNN K-Nearest Neighbor

SOM Self-Organizing Map

ANFIS Adaptive-Network-based Fuzzy Inference System

GA Genetic Algorithm

GP Genetic Programming

BPNN Backpropagation Neural Network

WNN Wavelet Neural Network

RSM Response Surface Methodology

RBF Radial Basis Function

MLP Multi-Layer Perceptron

SVR Support Vector Regression

GRU Gated Recurrent Unit

LSTM Long Short-Term Memory

IoT Internet of Things

LSSVM Least Square Support Vector Machine

GA-SVR Genetic Algorithm–Support Vector Regression

ELM Extreme Learning Machine

R2 Coefficient of Determination

MSE Mean Squared Error

SSE Sum of Squared Error

RMSE Root Mean Square Error

MAPE Mean Absolute Percentage Error

MAE Mean Absolute Error

WWT Wastewater Treatment

WWTP Wastewater Treatment Plant

MBR Membrane Bioreactor

UASB Up-flow Anaerobic Sludge Blanket
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AGS Aerobic Granular Sludge

TMP Transmembrane Pressure

BOD Biological Oxygen Demand

COD Chemical Oxygen Demand

DO Dissolved Oxygen

TN Total Nitrogen

TP Total Phosphorus

HRT Hydraulic Retention Time

SS Suspended Solid

TSS Total Suspended Solid

CTSS Color Total Suspended Solid

MLSS Mixed Liquor Suspended Solid

MLVSS Mixed Liquor Volatile Suspended Solid

TOC Total Organic Carbon

TIC Total Inorganic Carbon

OLR Organic Loading Rate

TDS Total Dissolved Solid

RT Reaction Time

SRT Sludge Retention Time

EC Electrical Conductivity

EPS Extracellular Polymer

MB Methylene Blue
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