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Abstract: In recent years, a vision has been shared of how artificial intelligence (AI) can optimize the increasingly complex operations of
drinking water utilities. However, it has been unclear if and how water utilities use the technology. Here, we surveyed a simple random sample of
49 large US water utilities to provide a snapshot of progress. We found that 12 of them (24%) have used some form of AI. Of those that have not,
the majority plan to use or may plan to use AI in the next 5 years. The reported AI uses were experimental, manual, or partial models rather than
fully integrated, ongoing applications. Respondents are motivated to use AI for improving water quality, detecting leaks, and automating com-
plex systems, but they cited payback uncertainty and lack of AI expertise as the most common barriers to implementation. To better demonstrate
how AI can join other tools available to assist human operators, researchers should focus on the top motivations and barriers identified here and
partner with water utilities on convincing case studies of full-scale AI projects. These steps will support further responsible adoption of AI to
optimize water utility operations as part of more sustainable communities. DOI: 10.1061/JWRMD5.WRENG-5870. This work is made
available under the terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.
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Introduction

Drinking water systems are one of the most essential pieces of infra-
structure in modern cities. By providing clean water year-round, they
enable economic activity and support important functions in public
health and safety. They are sociotechnical systems: many water users
(social) drive what ends up being a variable water demand, whereas
the infrastructure (technical) merely responds. As such, water utility
operations are inherently dynamic, requiring many decisions. On a
daily basis water operators decide, for example, which pumps to run,
how much alum to dose at the head of a plant, or how high to fill a
tank. At other time scales, decisions are made about responding to
emergencies and planning for infrastructure improvements.

Growing Complexity

The complexity of operational decisions—and thus the need for
technologies to assist with them—grows with both the size of the
system and the number of variables being considered. Operations
are often facilitated through a supervisory control and data acquis-
ition (SCADA) system with programmable logic controllers (PLCs)
offering some degree of automation; 93% of North American
water utilities have a SCADA system (Wallis-Lage 2020). Simply
as a result of population growth and urbanization, water systems
will continue to grow, as will the scale of their operations.

The number of operational variables is also increasing. Because
of the obvious public health implications, customers (and regula-
tors) have long had high expectations of water quality and pressure,
and water utilities are accustomed to framing their operational
decisions around just a few variables measured at a few times and
places. But recent trends in sensor technology, smart cities, cloud
computing, the internet of things (IoT), and real-time control (RTC)
are now pushing water utilities to monitor system performance in-
dicators at more locations and with greater frequency than before
(Saravanan et al. 2018; Ramos et al. 2019; Smith 2020; Wallis-
Lage 2020). Further, the list of customers’ expectations has now
swelled to include accountability for water loss (AWWA WLCC
2019), affordability (Rubin 2018; Pierce et al. 2020), energy man-
agement (Patel et al. 2022; Sowby 2023), and continuity of service,
even during extreme events (Sowby and Lunstad 2021). Some of
these expectations are starting to be regulated in certain jurisdictions.

In short, water utilities are getting bigger and having to consider
many more variables whose interdependent patterns may not be
clear to humans. All these forces are making their operations more
complex than ever before, suggesting that technologies beyond
SCADA may be necessary to help manage them in the context
of more sustainable infrastructure and communities.

AI as a Solution

Considerable research in recent years has explored the use of ar-
tificial intelligence (AI) in water utilities (Fu et al. 2022), including
various machine learning (ML) techniques and other optimization
heuristics that allow a program to develop itself over time from new
data, beyond strict human programming. AI may run on top of
SCADA—which is the most advanced computing center in most
water systems—but the difference is that SCADA merely executes
preprogrammed operations, whereas AI actively learns, predicts,
optimizes, and recommends new operations as it encounters new
conditions. Digital transformations are already occurring in the
water sector (Sarni et al. 2019; Boyle et al. 2022), and AI is a
key point of discussion. The general claim is that AI, because of
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its ability to dynamically process large amounts of information
and identify complex relationships, can assist human operators and
lead to more optimized water systems (Lunani 2018; Doorn 2021;
Garzón et al. 2022).

Recent literature has described several applications of AI tech-
niques to water utilities. The most common appears to be pipe con-
dition assessment and leak detection (Baird et al. 2019; Zhou et al.
2019; Cantos et al. 2020; Fitchett et al. 2020; Snider and McBean
2020; Yazdekhasti et al. 2020; Dawood et al. 2020; Kahn 2021;
Zhang et al. 2022; Fu et al. 2022). The consensus from these studies
is that AI improves leak detection outcomes, recognizing patterns in
the data that humans cannot see. In water treatment, AI techniques
have helped in water quality diagnosis, process control, and pollu-
tant modeling, as reviewed by Fan et al. (2018), Ismail et al. (2021),
Li et al. (2021), and Alam et al. (2022). In water distribution, AI has
helped detect contaminant intrusions and other water quality anoma-
lies (Dogo et al. 2019; Grbčić et al. 2021; Mboweni et al. 2021).

Rahim et al. (2020) reviewed studies where AI has been used
to analyze customer water use data from advanced metering infra-
structure (AMI), as in water demand forecasts and water conserva-
tion programs. Similarly, Villarin and Rodriguez-Galiano (2019)
developed water demand models leveraging AI, noting that the
methods were more accurate than linear predictions. Lunani (2018)
noted a few specific instances where AI has supported drinking water
operations, such as capturing drift from optimal operating points, pre-
dicting bacterial hot spots in the distribution system, and identifying
flaws in control strategies. Benefits such as energy savings in pump
scheduling have also been observed with AI (Ostojin et al. 2011;
Pasha and Lansey 2014; Helmbrecht et al. 2017; Bagolee et al. 2018).

Although water system planning and modeling are not the focus
of our study, others have speculated that AI may facilitate automated
hydraulic model calibration (AWWA EMAC 2020), optimized in-
frastructure planning (Beh et al. 2017), and preventive emergency
repairs (Tripathi et al. 2021). Others have explored how AI can sup-
port digital twins in the water sector, which according to AWWA’s
recent consensus definition are “digital, dynamic system[s] of real-
world entities and their behaviors using models with static and
dynamic data that enable insights and interactions to drive action-
able and optimized outcomes” (Karmous-Edwards et al. 2022). AI’s
capabilities in data processing, pattern recognition, and optimization
make it a promising companion for digital twins.

The foregoing review illustrates the many possibilities AI can
offer water utilities. Yet although similar industries like energy and
transportation are readily adopting AI, its application to the water
domain is relatively underdeveloped (Hadjimichael et al. 2016;
Doorn 2021). Most of the reported results come from theoretical
research or isolated experiments rather than full-scale implementa-
tions in real water utilities, and more development must occur if
AI is to move from fundamental research into widespread practice
(Sowby and Walski 2021). In particular, the literature is sparse
in case studies describing actual AI implementations in water util-
ities. Further, most of the reported work has been produced by
either researchers or AI vendors rather than drinking water practi-
tioners, so one cannot easily gauge how water utilities perceive
such developments.

We note that our study was completed before the release of
ChatGPTand similar generative AI based on large language models
(LLMs). All industries are exploring how to use such disruptive
technology and the research literature is still emerging. For water
utilities, we speculate that generative AI may find a place in cus-
tomer service, staff training, and report creation, but not immedi-
ately in infrastructure operation which is the focus of our study.
Obviously this is a quickly developing field and needs more
attention.

Research Objectives

The research to date has provided a vision of what AI can do for the
water industry, enumerating and testing several possibilities. AI is
one of many tools a water utility may choose to use to assist human
operators. But it is unclear how many water utilities actually use AI
in their operations and if so, in what ways and to what effect. To
find out, we surveyed a sample of large US water utilities on their
use (or nonuse) of AI, seeking to learn something of their under-
standing, motivations, methods, and outcomes in doing so. From
the survey results we develop a few insights about how the industry
is approaching this technology and suggest actions to progress
toward responsible AI adoption.

Methods

Survey Preparation

Our approach was an online survey directed to a simple random
sample of large water utilities in the US. Based on the literature re-
view, conversations with industry professionals, and the guidance of
Robinson and Leonard (2019), we devised a survey of approxi-
mately 15 questions targeting the objectives just outlined. Due to
question logic in the branching survey, the number of questions each
respondent completed varied; some questions were skipped depend-
ing on certain responses. We deliberately kept the survey brief in
order to facilitate responses from a wide cross section of respond-
ents. The survey sought both quantitative and qualitative data.

Where possible, rather than define particular AI uses, we delib-
erately kept the questions open-ended in order to gather as much
information from the respondents as possible. We created the sur-
vey and collected responses through Qualtrics web-based software.
Table S1 presents the questions and responses; the complete instru-
ment is available as Protocol S1.

Sample Design

The sample was chosen from a database maintained by the USEPA in
its Safe Drinking Water Information System (SDWIS) (EPA 2021).
We downloaded the SDWIS Water System table and filtered it for
“active” “community”water systems serving 100,000 people or more.
Inactive water systems were not relevant to our study, nor were non-
community water systems (e.g., self-supplied campgrounds, schools,
or businesses). We restricted water utilities to the larger size because
they would be the most likely to have implemented some form of AI
for the reasons described previously and because we would be
able to contact a greater percentage of them than the more numer-
ous smaller water systems. After removing duplicates, we had a
list of 493 water utilities and their basic information.

We then searched online for the email address of each one’s op-
erations director, manager, or supervisor (or equivalent employee
who would be able to speak to the use of AI) and invited them to
complete the survey or forward it to someone in their organization
who could. Through this process, we ultimately invited 366 water
systems to complete the survey. Other than providing the water
utility’s name for validation only within our team, the responses
remained anonymous.

Results and Discussion

Survey Responses

From 366 contacted water utilities, we received 49 valid responses,
making a response rate of 13%. Responses came from water
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utilities in 21 states: Arizona, California, Colorado, Florida, Georgia,
Idaho, Illinois, Iowa, Louisiana, Massachusetts, Michigan, Nevada,
New Jersey, North Carolina, Ohio, Oregon, Pennsylvania, South
Carolina, Texas, Utah, and Virginia (Fig. 1). A complete table of
the survey results is provided as Table S1.

Use of AI

Fig. 2 shows an overview of the responses. About three-quarters of
respondents [37 of 49 (76%)] have not used AI or were unsure if
they have. About one-quarter [12 of 49 (24%)] have used AI in the
past or currently use it. The finding confirms others’ general
observations that AI is not yet widely used among water utilities
(Hadjimichael et al. 2016; Doorn 2021).

Among the 12 AI users, applications have been in early stages,
including experimenting with predictions and training models,
manually using AI models for analysis, and partially integrating
AI into their water systems. No respondents reported any fully in-
tegrated AI applications (full-scale ongoing installations), or what
Fu et al. (2022) call “industrial” applications. The results agree with
the research reviewed previously that showed a lack of full-scale
AI implementations in water utilities. Most have had fewer than
5 years’ experience with the technology, although some apparent
early adopters have had more. As for the area of the system where
AI has been used, one respondent indicated raw water reservoirs,
two indicated treatment, five indicated distribution, and two indi-
cated both treatment and distribution.

Among the 37 who have not used AI, 68% (25 of 37) plan to use
AI or may plan to use AI in the next 5 years. These respondents
were generally open-minded about AI as suggested by their com-
ments (e.g., “Having discussions about using AI,” and “Technology
is always advancing, we may look into AI in the future”). Many
speculated that AI might be used to prioritize water main replace-
ments, predict pipe breaks, forecast varying water demands, and
optimize chemical doses, again agreeing with possibilities already
explored in the literature. The comments also reflected a desire to
explore AI in conjunction with upcoming projects rather than as a
new stand-alone effort. A few, however, questioned the value of AI
(“Not sure AI is useful or tells me something I don’t already know,”
“Not sure how the AI will enhance our system,” and “I’m not aware
of what AI opportunities are available”).

The digital water adoption curve proposed by Sarni et al. (2019)
may be helpful for understanding progression toward AI and other
digital technologies through basic, opportunistic, systematic, and
transformational phases. Although our survey was not designed to
evaluate the respondents’ position on the curve, we suggest it as an
exercise for water utilities to consider.
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Fig. 1. States in which water utilities responded to the survey.

Have you in 
the past, or do 

you currently 
use, some 

form of AI in 
your water 

system’s 
operations?

49 (100%)

No: 34 
(69%)

Not sure: 3
(6%)

Yes: 12
(24%)

Do you plan to in
the next 5 years?

37
(76%)

Yes: 5 
(10%)

No: 10
(20%)

Maybe: 20
(41%)

Experiments: 3 (6%)

Manual models: 4 (8%)

Partial integration: 3 (6%)

Less than 2 years: 3 (6%)

2–5 years: 3 (6%)

More than 5 years: 2 (4%)

Unanswered: 6
(12%)

At what stage
is your use of AI?

How long have you used 
AI in your water system?

Percentages shown of total 
(49 respondents)

Fig. 2. Overview of water utilities’ responses on the use of AI.

© ASCE 06023002-3 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2023, 149(7): 06023002 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

41
.4

0.
19

6.
13

0 
on

 0
1/

01
/2

4.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

http://ascelibrary.org/doi/10.1061/JWRMD5.WRENG-5870#supplMaterial


Motivations, Benefits, and Barriers

When asked about their motivations for using or planning to use AI
(Fig. 3), respondents most frequently cited saving money, detecting
leaks, and improving water quality. These motivations, particularly
leak detection, are well supported by the literature cited previously.
Automating complex systems and saving energy ranked in the
middle. The remaining motivations were enhancing water conser-
vation, improving hydraulics (e.g., pressure management), integrat-
ing with other technologies (e.g., AMI and SCADA), saving time/
labor, and improving public perception. Certainly some of the
motivations overlap—saving energy will save money, and fixing
leaks will conserve water—but the list is nonetheless a helpful
categorization. Although AI has the potential to improve everything
on the list, the responses show where water utilities’ priorities lie
and where future AI research should be directed.

Among the 12 AI users, three reported seeing benefits in auto-
mating a complex system, three in integrating with other technol-
ogies, two in saving money, and one each in improving hydraulics,

improving water quality, enhancing water conservation, and saving
time/labor. However, the benefits did not always match the moti-
vations they gave. One water utility tried AI to save money, time,
and labor but realized other benefits instead. Another saved time
and labor as expected but did not realize its goals of automation
or leak detection.

When asked about barriers preventing them from using AI
(Fig. 4), general respondents most frequently cited personnel and
finance issues. Both suggest reservations about the long-term risks
of AI investments. They similarly appear in Sarni et al.’s (2019)
barriers to water sector digitalization as “human resources impact”
and “financing solutions without a clear value proposition.”

Given the advanced nature of the technology, a water utility may
worry about finding expertise to manage AI in an ongoing way,
either in-house or with consultants and vendors. Brief comments
like “Hard to find qualified staff,” “Buy-in from key stakeholders,”
“Staff not skilled,” and “Staff are too busy” typify respondents’
concerns about supporting AI with the proper personnel. Shortages
of AI skills have been noted in certain markets (Wolff et al. 2020),
but such concerns are not well-addressed in the research literature
or in professional associations specific to the water industry.

Naturally, financial barriers were near the top of the list. Be-
cause so few AI implementations exist in drinking water systems,
and because such projects are new, private, and scarcely docu-
mented, the costs are not well understood. Each one is custom
to the system’s needs and it is infeasible to provide costs for a gen-
eral case; further, the benefits can vary considerably. Without de-
finitive case studies and with only vague descriptions of benefits, a
water utility may not prioritize an AI investment over competing
demands for money. Ultimately, customers pay the bill, and water
utilities want to be sure their investment is worthwhile. One re-
spondent said, “[AI] is expensive and hard to do consistently,”
and another said, “the expense of software and programmers is
more than the expense of trained water professionals,” underscor-
ing the convincing financial and staffing case that AI must make.

The next level of barriers involved data, in both quantity and
quality. To train useful AI, one needs a mountain of data. In the
study by Sarni et al. (2019), these fell under “systems integration
and interoperability.” Accurate, ongoing field measurements are
particularly important, one water utility in our survey said, and
getting them can be a major task for a medium or large system.

17 (35%)

15 (31%)

15 (31%)

12 (24%)

12 (24%)

7 (14%)

7 (14%)

7 (14%)

7 (14%)

5 (10%)

4 (8%)

Save money

Detect leaks

Improve water quality

Automate complex system

Save energy

Enhance water conservation

Improve hydraulics

Integrate with other technologies

Save time/labor

Improve public perception

Other

Fig. 3. Water utilities’ responses on motivations for using or planning
to use AI.
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Fig. 4. Water utilities’ responses on barriers to using AI.
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Scalability and repeatability were noted barriers as well, which are
to be expected when the reported AI applications, in both the liter-
ature and in this survey, are still preliminary.

Some respondents simply prefer to use other technology.
One water utility said, “We are not aware of any process that isn’t
already automated in our SCADA system that could help us.”
Another respondent put simply, “AI is a popular topic, but I haven’t
seen many practical benefits compared to our current methods.”
Others were more skeptical: “So far, all the AI claimed [for the
water industry] is questionable.” Because AI has, by definition,
so many possibilities, potential users apparently struggle to grasp
specific applications and instead see only vague technology. Con-
cerns about cybersecurity, safety, and reliability were expressed in
the comments, but less so than other barriers at this stage, perhaps
because of the low adoption rate of AI in the first place.

Continued Need for Human Operators

Respondents’ comments throughout the survey emphasized a con-
tinued need for well-trained human operators in drinking water sys-
tems, whether AI is part of the picture or not. Water operators “have
a conservative mindset when adopting new technology,” one com-
ment read. Because their duties are a matter of public health and
safety, operators naturally hesitate to cede too much control to a
technology they do not understand and that may put the system
at risk. Several respondents acknowledged the value of AI in pro-
viding access to “previous experience” but said that “critical deci-
sions” would be best left to humans. Another worried that “AI may
keep people from learning and being able to perform their jobs in an
emergency if the AI system went down.” Finally, one respondent
said, “Awater system should never be ‘set on automatic’ and should
always be monitored and operated by experienced staff.”

Walski (2023) commented that, in contrast to physics-based
models, AI models assume that the past is a good predictor of the
future; however, many situations that arise in a water system will
not have appeared in the training data. Harmful unintended conse-
quences (Sowby and Hotchkiss 2022) may result from extrapolat-
ing beyond an AI model’s training without oversight from human
professionals. Indeed, the human element is still present. AI re-
searchers and vendors would do well to better define the scope
of useful AI assistance for this community and to assure water
operators of their ongoing essential role.

We found that water utilities expressed concern on one hand
about involving AI in tasks that are too risky and on the other hand
about having human operators who are too busy. We suggest there is
a middle ground where AI can work best. The potential for AI to
handle certain low-risk tasks is an ideal benefit that may be consid-
ered. From the perspective of one water utility, “We are short on em-
ployees [and] may use AI to determine condition of pipe.” Used in
such a way, AI can be trained to handle mundane but data-intensive
tasks and allow human operators to allocate their labor to tasks that
better serve ratepayers. Sarni et al. (2019) concurred, noting that
“intelligent automation solutions may be able to augment human
performance : : : thus freeing individuals to focus on more human-
necessary aspects, ones that require empathic problem-solving abil-
ities, social skills and emotional intelligence.” In time, water utilities
may develop enough confidence in AI to feel comfortable extending
its use into other aspects of their operations. This is yet another argu-
ment for AI case studies involving water utility partners.

Limitations and Further Work

We recognize that our survey has a moderately high margin of error
in its quantitative results (at most �14% for a sample of 49 in a

population of 493 at the 95% confidence level, according to the usual
margin of error calculation). This is due to the small sample size
and the low response rate, which are to be expected in the tedious
and time-consuming activity of directly contacting large numbers of
water utilities, as Chini and Stillwell (2017) and Sowby et al. (2019)
described.

In conducting our survey, it was apparent that several respond-
ents and would-be respondents did not have even a basic awareness
of AI or why it would be relevant to their water systems. Although
one of our objectives was to gauge their understanding of AI in the
first place, the lack of understanding may have discouraged survey
participation in some cases. Some contacts responded to our emails
with statements like, “I don’t know how to answer this survey.”
Similarly, given the variety of technologies that one may consider
as AI or which may already be embedded in certain processes,
some respondents may have answered that their water utility does
not use AI when in fact it does.

A related limitation was contacting the right person to actually
complete the survey. This had to be someone who knew whether
the water utility uses AI in its operations or could at least find some-
one in the organization who did. Our impression from the written
comments is that those who ultimately completed the survey were
reasonably informed about AI; however, such respondents may not
represent the water industry at large. As AI developments continue,
educating water utility personnel about the technology should not
be overlooked.

Where this study captured responses only from large US drink-
ing water utilities, the results may not represent AI adoption and
attitudes among smaller water utilities (where we speculate that
AI uptake will be much lower because of less system complexity)
or water utilities in other countries under significantly different
regulatory environments, which future work may address.

Conclusions

Our study provides several key messages for both drinking water
practitioners and researchers. Water utility operations are becoming
more complex as water systems grow and address more operating
variables. Artificial intelligence has been suggested as a technology
to help water operators meet this challenge. Although AI impacts
many industries and its potential applications to drinking water
services are well researched, actual uptake among water utilities
is limited. Our survey of 49 large US water utilities showed that
12 of them (24%) have used AI and that those uses have been
experimental or manual analyses rather than full-scale, ongoing
applications. General respondents were largely motivated by the
leak detection and water quality potential of AI, and concerns about
finding AI expertise and return on the investment were the most
frequently mentioned barriers. AI clearly has the potential to help
water operators manage increasingly complex systems, but the
technology is not yet mainstream in the industry. In the opinion
of some water utilities, AI is a vague technology whose benefits
are not obvious and whose costs are high. AI is just one of many
tools a water utility may choose to use, and although many cur-
rently choose not to, they are open to the idea.

Researchers can help overcome some of these barriers. To grant
water utilities more confidence in fully integrating AI into their
water systems, researchers should better connect their work to
the daily practice of water utility operations and communicate
the benefits to water operators (Sowby and Walski 2021). Leak de-
tection in particular seems to be an appealing area. Where much of
the literature has reported isolated experiments by researchers or AI
vendors, we suggest that full case studies featuring water utility
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partners will be the most convincing. Researchers should work
to address the main barriers to AI adoption as determined by this
survey, namely staff expertise and payback. Finding low-risk entry
points for AI and assuring water operators of their ongoing role
alongside AI are essential.

These steps will support further responsible adoption of AI
to optimize water utility operations as part of more sustainable
communities.

Data Availability Statement

All data, models, and code generated or used during the study
appear in the published article.

Acknowledgments

Sanjay Patel, chief technology officer and co-founder of Con-
fluency, helped develop the survey questions. Emily Dicataldo, a
BYU research assistant at the time, helped collect survey responses.
The research was completed at BYU’s Civil and Construction
Engineering Sustainability Lab.

Author contributions: Alyson H. Rapp contributed to the
conceptualization, methodology, investigation, writing the original
draft, and writing—reviewing and editing. Annelise M. Capener
contributed to the investigation and writing—reviewing and
editing. Robert B. Sowby contributed to the conceptualization,
methodology, resources, writing—reviewing and editing, supervi-
sion, and project administration.

Supplemental Materials

Protocol S1 and Table S1 are available online in the ASCE Library
(www.ascelibrary.org).

References

Alam, G., I. Ihsanullah, M. Naushad, and M. Sillanpää. 2022. “Applica-
tions of artificial intelligence in water treatment for optimization
and automation of adsorption processes: Recent advances and
prospects.” Chem. Eng. J. 427: 130011. https://doi.org/10.1016/j.cej.2021
.130011.

AWWA EMAC (American Water Works Association, Engineering Model-
ing Applications Committee). 2020. “Water distribution system model-
ing: Past & present.” J. AWWA 112 (9): 10–16. https://doi.org/10.1002
/awwa.1572.

AWWAWLCC (American Water Works Association, Water Loss Control
Committee). 2019. Key performance indicators for non-revenue water.
Denver: AWWA.

Bagolee, S. A., M. Asadi, and M. Patriksson. 2018. “Minimization of water
pumps’ electricity usage: A hybrid approach of regression models with
optimization.” Expert Syst. Appl. 107: 222–242. https://doi.org/10.1016
/j.eswa.2018.04.027.

Baird, G. M., D. Hatler, and P. Carpenter. 2019. “How cost effective is
machine learning/AI applied to leak detection and pipe replacement pri-
oritization?” In Proc., Pipelines 2019, 274–283. Reston, VA: ASCE.
https://doi.org/10.1061/9780784482506.029.

Beh, E. H. Y., F. Zheng, G. C. Dandy, H. R. Maier, and Z. Kapelan. 2017.
“Robust optimization of water infrastructure planning under deep
uncertainty using metamodels.” Environ. Modell. Software 93 (14):
92–105. https://doi.org/10.1016/j.envsoft.2017.03.013.

Boyle, C., G. Ryan, P. Bhandari, K. M. Y. Law, J. Gong, and D. Creighton.
2022. “Digital transformation in water organizations.” J. Water Resour.
Plann. Manage. 148 (7): 03122001. https://doi.org/10.1061/(ASCE)
WR.1943-5452.0001555.

Cantos, W. P., I. Juran, and S. Tinelli. 2020. “Machine-learning–based risk
assessment method for leak detection and geolocation in a water dis-
tribution system.” J. Infrastruct. Syst. 26 (1): 04019039. https://doi
.org/10.1061/(ASCE)IS.1943-555X.0000517.

Chini, C. M., and A. S. Stillwell. 2017. “Where are all the data? The case
for a comprehensive water and wastewater utility database.” J. Water
Resour. Plann. Manage. 143 (3): 01816005. https://doi.org/10.1061
/(ASCE)WR.1943-5452.0000739.

Dawood, T., E. Elwaki, H. M. Novoa, and J. F. G. Delgado. 2020.
“Artificial intelligence for the modeling of water pipes deterioration
mechanisms.” Autom. Constr. 120 (16): 103398. https://doi.org/10
.1016/j.autcon.2020.103398.

Dogo, E. M., N. I. Nwulu, B. Twala, and C. Aigbavboa. 2019. “A survey of
machine learning methods applied to anomaly detection on drinking-
water quality data.” Urban Water J. 16 (3): 235–248. https://doi.org/10
.1080/1573062X.2019.1637002.

Doorn, N. 2021. “Artificial intelligence in the water domain: Opportunities
for responsible use.” Sci. Total Environ. 755 (1): 142561. https://doi.org
/10.1016/j.scitotenv.2020.142561.

EPA (US Environmental Protection Agency). 2021. “SWDIS model.”
Accessed January 13, 2022. https://www.epa.gov/enviro/sdwis-model.

Fan, M., J. Hu, R. Cao, W. Ruan, and X. Wei. 2018. “A review on exper-
imental design for pollutants removal in water treatment with the aid of
artificial intelligence.” Chemosphere 200: 330–343. https://doi.org/10
.1016/j.chemosphere.2018.02.111.

Fitchett, J. C., K. Karadimitriou, Z. West, and D. M. Hughes. 2020.
“Machine learning for pipe condition assessments.” J. AWWA 112 (5):
50–55. https://doi.org/10.1002/awwa.1501.

Fu, G., Y. Jin, S. Z. SunYuan, Z. Yuan, and D. Butler. 2022. “The role of
deep learning in urban water management: A critical review.” Water
Res. 223 (5): 118973. https://doi.org/10.1016/j.watres.2022.118973.

Garzón, A., Z. Kapelan, J. Langeveld, and R. Taormina. 2022.
“Machine learning-based surrogate modeling for urban water networks:
Review and future research directions.” Water Resour. Res. 58 (5):
e2021WR031808. https://doi.org/10.1029/2021WR031808.
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