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• RSM models optimise drinking water
production by enhanced coagulation.

• Two surface water catchments were
compared: river and reservoir.

• Cluster analysis determined baseline
and peak organic matter loads at
DWTPs.

• Sensitivity analysis allowed the inter-
pretations of RSM models outputs.

• Peak scenarios were described as epi-
sodes particularly important for
optimisation.
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Coagulation is themain process for removing natural organicmatter (NOM), considered to be themajor disinfec-
tion by-products (DBPs) precursor in drinking water production. In this work, k-means clusters analysis were
used to classify influent waters from two different surface drinking water treatment plants (DWTPs) located in
the Mediterranean region. From this, enhanced coagulation models based on response surface methodology
(RSM) were then developed to optimise coagulation at two water catchments (river and reservoir). The cluster
analysis classified thewater quality of the rawwaters into two groups related to baseline and peak organic loads.
The developed enhanced coagulation models were based on the turbidity, total organic carbon (TOC) and UV254

removals. Sensitivity analysis applied to the models (after predictors selection) determined the factors relative
individual contributions for each DWTP scenario. Then, profile plots for enhanced coagulation were studied to
identify the optimal levels for each case. Models mean R2 were 0.85 and 0.86 in baseline and 0.85 and 0.84 in
peak scenario for river and reservoir catchments, respectively. Results of this study indicate that the surface
water quality variation in river DWTP is seasonal and is expressed by an increase of turbidity, while in the reser-
voir DWTP is related to extreme weather events showing high levels of dissolved organic load (TOC and UV254).
During baseline cases, where raw waters present low levels of organics, the three factors optimal adjustment
should be ensured to optimise coagulation. Then, during peak scenarios, where influent waters present high or-
ganics, the optimal for enhanced coagulation relies on the correct adjustment of Cd. The presentedwork provides
models for drinking water production aimed to propose the optimum conditions for enhanced coagulation, con-
sidering the influent water characteristics under different weather conditions.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Drinking water treatment plants (DWTPs) deal with fluctuations in
water quality and quantity. Surface water is plenty of organic
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Fig. 1. Case-study DWTPs location (NE Spain). A and B correspond to the Llobregat and Ter
DWTPs, respectively. At the Ter DWTP, raw water is pipe-conducted (55 km) from reser-
voirs to DWTP.
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compounds, and its receipt is subjected tomultiple factors including ge-
ography, geology, hydraulic regimes, land use, weather and the types of
water catchments (Awad et al., 2018). Present and future scenarios re-
lated to climate change, where episodes of extreme events are becom-
ing frequent and the challenges populations face, such as pandemics
or the appearance of new contaminants, could induce some variations
in water characteristics (Delpla et al., 2009; Poch et al., 2020; Sun
et al., 2020). That said, natural organic matter (NOM) is ubiquitous
and spread in water all over the Earth.

During water treatment processes, NOM is reduced because its di-
rect impact on the formation of disinfection by-products (DBPs)
(Chaukura et al., 2020; Godo-Pla et al., 2020b). DBPs are reported as
being harmful compounds for humans and, as such, are regulated in
both European (Directive (EU), 2020) and national directives (RD,
140/2003, 2003). NOM is a heterogeneous matrix composed of particu-
late, colloidal and dissolved organics. Inside the water-treatment train,
coagulation is a key process and is usually located in the first stages of
any water treatment. The typical parameter used to optimise coagula-
tion in drinkingwater production is turbidity. However, enhanced coag-
ulation aims to optimise coagulation for NOM removal, with the
objective to reduce the residual organic water compounds (Sillanpää
et al., 2018). These compounds react with the chemical disinfectants,
added for water distribution, generating DBPs (Godo-Pla et al., 2019;
Krzeminski et al., 2019). To avoid high concentrations of DBPs at the
end of large distribution networks (i.e., just before consumption), the
minimization of NOM compounds should be the main strategy in the
initial stages of water treatment, especially during the coagulation pro-
cess (Liu et al., 2012; Williams et al., 2019). In this sense, several water
quality parameters are used to control and monitor the organics in full-
scale facilities, some of which are: turbidity, Total Organic Carbon (TOC)
or ultraviolet absorbance at 254 nm (UV254) (Andersson et al., 2020;
WHO, 2017). These quality parameters can be used to assess coagula-
tion performance (Edzwald, 1993; Volk et al., 2000). TOC and UV254

are related to DBPs precursors and large organic pollutants
(e.g., humic acids), respectively (Ates et al., 2007; Beauchamp et al.,
2020).

Coagulation can be optimised through several pathways although
there are various factors affecting coagulation performance. Because
there are organic, inorganic, composite, hybrid coagulants and
biocoagulants (Adesina et al., 2019; Harfouchi et al., 2016; Xia et al.,
2018), themost efficient coagulant performancedepends on the charac-
teristics of the raw water. Operationally, pH and chemical dosages are
the main factors influencing process performance and its optimisation
(Arruda et al., 2018; Trinh and Kang, 2010; Xie et al., 2012; Yan et al.,
2008). The optimal chemical dosages are usually determined from lab-
oratory jar test experiments. Even though, coagulation operation is usu-
ally suboptimal due to other limitations related to full-scale operation
and water quality fluctuations. To deal with that, several modelling ap-
proaches to optimise coagulation in water production, particularly re-
sponse surface methodology (RSM), have been described in the
literature.

RSM is a technique which allows planning for a set of minimum ex-
periments to evaluate the effects and the interactions of coagulation fac-
tors and the respective responses (Zainal-Abideen et al., 2012). As a
response for RSM, and in accordance with the abovementioned state-
ments, it is important to select parameters which are monitored in a
real facility. From this basis, RSM allows mathematical models that
have the capacity to predict values focused on influent water character-
ization aimed to optimise coagulation process (Apostol et al., 2011;
Suquet et al., 2020).

AsDWTPs dealwith influentwater qualityfluctuations, it is essential
to adjust coagulation to cope with the different scenarios. This is espe-
cially relevant in Mediterranean regions where water provisioning is
decreasing and seasonal changes and extreme events, such as heavy
rains and droughts, are increasing in frequency (Jorda-Capdevila et al.,
2019). Consequently, coagulation modelling requires not only
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knowledge of the process but also a broad range of available data. Nu-
merous studies, fundamentally based on historical operational data,
have attempted to develop models to optimise the coagulation step
(Heddam et al., 2012; Kim and Parnichkun, 2017; Omran, 2018). Data-
driven models such as artificial neural networks (ANNs) present high
levels of predictability and accuracy with huge amounts of data but
have some limitations when predicting responses outside the range of
the training region (Baxter et al., 2001). On the other hand, models
such as RSM are designed from experimental work, providing a detailed
level of process understanding (Sadri Moghaddam et al., 2010). Hence,
the development of a model integrating full-scale datasets and RSM
models emerge as a useful tool for decision-making.

Within this framework, the motivation of this study arose from the
assumption that the optimisation of coagulation based on the influent
water characterization contributes to the minimization of NOM at the
effluent of DWTPs. The main objective of this study is to understand
how coagulation process is affected by different surface water catch-
ments and their intrinsic fluctuations. In order to achieve that, this
work proposes enhanced coagulation models based on RSM and influ-
ent DWTP characterization for the optimisation of coagulation process
at two Mediterranean DWTPs. This study has been conducted with the
following specific objectives: i) identify influentwater quality classifica-
tions using clustering techniques, ii) develop RSMmodels for enhanced
coagulation and iii) analyse the effect of operational parameters in en-
hanced coagulation through sensitivity analysis for the different water
catchments.

2. Materials and methods

2.1. Case study

The study was carried out at two case-study DWTPs, namely the
Llobregat and the Ter DWTPs (Fig. 1), located in Catalonia (NE Spain).
These two DWTPs are managed by the Ens d'Abastament d'Aigua Ter-
Llobregat (ATL) which supplies water to the Barcelona Metropolitan
Area (≈4.5 m inhabitants). Treatment capacity are 3.2 and 8.0 m3·s-1

for the Llobregat and Ter DWTPs, respectively. The Llobregat DWTP
catchment water is from the Llobregat River, which is the second lon-
gest river in Catalonia and historically characterized as being subjected
to high levels of anthropogenic pressure, related to textile and pharma-
ceutical industry derived pollution (Kuster et al., 2008) and the exploi-
tation of salt mines in the upper part of the basin (Postigo et al., 2018).
On the other hand, the Ter DWTP takes water from the Sau-Susqueda-
Pasteral reservoir system (Ter River basin). These reservoirs change
river regimes and, consequently, water characterization (Espadaler
et al., 1997). In both facilities, the first step of the conventional treat-
ment chain consists of a primary oxidation (PO) step, followed by the



Table 1
DWTPs influent water characterization for the sampling campaigns (SC).

SC DWTP Date Turbidity (NTU) TOC (mgC·L−1) UV254 (m−1)

SC 1a Llobregat 03.2019 9.1 4.1 12.7
SC 2 Llobregat 03.2020 3.7 2.6 11
SC 3 Llobregat 08.2020 26.2 1.8 11.5
SC 4a Llobregat 11.2020 63.3 3 12.9
SC 5a Ter 02.2020 5.3 3.6 15.1
SC 6 Ter 03.2020 5.2 3.7 14.4
SC 7 Ter 07.2020 0.9 3.2 12.7
SC 8a Ter 11.2020 4.8 2.8 11.9

a Sampling campaigns performed for RSM.
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coagulation process. PO represents the first chemical barrier, located at
the beginning of the treatment, attempting to oxidise a wide range of
compounds present in rawwaters (Godo-Pla et al., 2020a). For this pur-
pose, potassium permanganate is added at the Llobregat DWTP, while
chlorine-based oxidants are applied at the Ter DWTP before
coagulation.

2.2. Cluster analysis

Influent water characteristics were evaluated using cluster analysis.
In previous scientific literature, clustering has been stated as a suitable
technique for water classification when detecting temporal changes in
water characterizations (Celestino et al., 2018; Fathi et al., 2018; Hou
et al., 2018). For this purpose, k-means clustering was applied in this
work, with the aim to establish influent water quality classifications.
K-means clustering is a partition method based on centroids aimed to
classify large datasets into a pre-specified number of clusters. The first
iteration of the cluster algorithm states randomly k-clusters along
dataset and calculates the centroid of each cluster. Then, in the second
iteration, each data point is assigned to the closest centroid. Centroids
and their associated data constitute a cluster. The Euclidean distance
was used to determine the similarity between clusters.

Historical datasets were obtained from case-study DWTPs daily lab-
oratory analytics corresponding to the period 2017-2020. Using z-score
mapping before clustering, input variables were scaled to have zero
mean and a standard deviation (std) of 1. To classify data, the following
influent water quality parameters were considered as features of the
clustering algorithm: TOC, turbidity, UV254, colour and the specific ultra-
violet absorbance (SUVA). Based on the study of these parameters, a
clustering algorithm with k-means = 2 was performed to classify the
quality of the raw waters into two categories with the aim to identify
cases with different raw waters composition through the seasons/
year. Python programming language (Python Software Foundation,
Wilmington, DE, USA) using Scikit-learn library (Pedregosa et al.,
2011) was used to design and execute clustering algorithms. SUVA
value was calculated resulting from the division of UV254 by TOC
(USEPA, 2009).

2.3. Enhanced coagulation models

First, RSM was designed. Then, experimental laboratory jar tests
were conducted to develop enhanced coagulation models. Subse-
quently, model validation was performed with sensitivity analysis.

2.3.1. Design
Central composite design (CCD) was selected as the RSM design for

its efficiency and flexibility, and the capacity to provide detailed infor-
mation in a minimum number of required runs for the region of inter-
est/operability. In this case, CCD was performed for three study
variables (factors) that influence the coagulation process: pH, coagulant
and flocculant dose. These variables have been described in the litera-
ture as the most influential factors in the coagulation step (Trinh and
Kang, 2010; Trinh and Kang, 2011). To assess coagulation performance,
a set of water quality parameters were identified to determine process
optimisation when accounting for all spectrum of water compounds
(turbidity) and the specific NOM fractions (TOC and UV254). Parameters
were selected based on its nature and also the capacity to bemonitored
online at the full-scale facilities. As models developed for this work are
aimed to aid decision-making, turbidity, TOC and UV254 were the cho-
sen RSM responses. The total number of runs for CCDwere 20, combin-
ing the conditions of various factors (see appendix A). The Design-
Expert® (Stat-Ease, Inc., Minneapolis, MN, USA) software version 11.0
was used to perform RSMs.

The range of the factors for the RSMs in the two case-study DWTPs
was 5.5 to 8.5 for pH level, 10 up to 70 mg·L−1 and 5.25 up to 70
mg·L−1 for the coagulant dose at Llobregat and Ter DWTP, respectively.
3

Then, flocculant dose varied from 0.2 up to 1.5 mg·L−1 at Llobregat
DWTP and 0.15 up to 1.74 at Ter DWTP. All RSM designs were planned
by expanding operational full-scale ranges to cover the entire range of
response (regions of interest). Two RSM were performed at each case
study DWTP.

2.3.2. Experimental jar tests
Water samples were collected at each case-study DWTP to execute

jar tests to develop the RSM models. At the Llobregat and Ter DWTPs,
four RSM were conducted. Table 1 summarises the water characteriza-
tion for the different sampling campaigns (SC).

For the laboratory analyses, turbidity, TOC andUV254weremeasured
with a Hach TU5200 turbidimeter, a Sievers M9 portable analyser and a
Cary 3500 UV–Vis Agilent Tech spectrophotometer, respectively. For
TOC andUV254measurements, sampleswerefiltered at 0.4 μmto ensure
the analysis of dissolved NOM. For UV254, a quartz cell with a 1 cm path
length was used. Next, pH was determined using a Crison micro pH
2000 apparatus. ISO 5667-3:2018 requirements were ensured for the
collection, storage, transport and pre-treatment of all the samples.

The jar test is a widespread methodology and for this study several
jar test experiments were conducted based on the standardized
DWTPs protocols to obtain feasible and comparable results according
to full-scale application. A summary of the jar tests phases (times and
speeds) is presented in appendix B. Jar tests were carried out using a
Phipps & Bird (7790-910, Richmond, VA, USA) six paddle programma-
ble jar tester and the chemical reagents employed were obtained from
the DWTPs supporting this study. The case-study DWTPs use alum-
based coagulant (Polyaluminium Chloride) to perform coagulation
unit operation. There is a difference concerning flocculant type in that
the Llobregat DWTP adds a cationic quaternary ammonium-based poly-
mer (PolyDADMAC), while the Ter DWTP doses with a starch-based
flocculant.

2.3.3. Predictors selection
From RSM experiments, water characterization (turbidity, TOC and

UV254) was obtained for the fixed coagulation conditions (see appendix
A). Based on the selected factors (pH, coagulant and flocculant dose),
the full quadratic equation is presented in Eq. (1).

Y ¼ β0 þ β1pH þ β2Cd þ β3Fd þ β4pHCd þ β5pHFd þ β6CdFd
þ β7pH

2 þ β8Cd
2 þ β9Fd

2 ð1Þ

where Y is the percentage of removal for responses, βx are numerical
model coefficients and pH, Cd and Fd the model factors. Cd and Fd are
the coagulant and the flocculant dose, respectively. Related to the equa-
tion elements β1, β2 and β3 are the one factor interactions; β4, β5 and β6

are the two factor interactions and β7, β8 and β9 are the quadratic
effects.

Among all models' factors, it is necessary to state a procedure with
the capacity to systematize the selection of the best features for each
model. Hence, the best subset selection method was applied to the
models obtained from jar test experimental data, allowing to determine
the optimal number of predictors to ensure the best features under a
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sufficient level of predictability. This method consists of fitting models
considering each possible combination of the predictors candidates
(p). In this case, the total number of p is listed in Eq. (1) (p = 9),
being 2p (29) the maximum number of combinations (Godo-Pla et al.,
2020a). For this study, the identification of the best model was based
on the determination of the following statistics: sum of squares error
(SSE), R2 and adjusted R2 (R2

adj.) values. From this, models can be se-
lected by minimizing the prediction error or maximizing the R2 – R2

adj.

R2 enables to identify the predictive accuracy while the R2
adj. value pro-

vides the coefficient of determination for each model pondered accord-
ing to the number of predictors. Models coefficients significance was
ensured (p-value <0.05) after the application of the best subset selec-
tion method. Plots of R2 considering 2p are presented in appendix C.
This method is useful for a limited number of predictors due to compu-
tational limitations. The software used in this study wasMATLAB 2019a
(Mathworks®, Natick, MA, USA).

2.3.4. Sensitivity analysis
To study the enhanced coagulation models designed by RSM and

performed by the best subset selection method, a sensitivity analysis
was conducted to explore and to determine the impact of factors (pH,
coagulant and flocculant dose) on the quality parameters (turbidity,
TOC and UV254 removal efficiency). Equations were analysed through
delta mean-squared sensitivity analysis to determine the contribution
of the relative factors. The delta mean-squared (δimsqr) non-
dimensional sensitivity function was chosen to determine the signifi-
cance of model factors as well as their interactions. Sensitivity analysis
was used to verify the robustness of the models and their reliability
for the different scenarios at eachDWTP. Further details on themethod-
ology can be found elsewhere (Godo-Pla et al., 2021; Sin and Gernaey,
2016). MATLAB 2019a (Mathworks®, Natick, MA, USA) was used to
perform the sensitivity analyses.

3. Results and discussion

3.1. Cluster analysis

K-means clustering was developed to classify in two clusters influ-
ent water quality datasets (2017-2020 period) for the Llobregat and
Ter DWTPs. Accounting for water characterization, the following pa-
rameters were selected: turbidity, TOC, UV254, colour and SUVA value.
Water colour is directly related to NOM content originated from wood
and soil (Christman and Ghassemi, 1966; Dragon et al., 2018), turbidity
accounts for particulate, colloidal and soluble water components
(Gregor et al., 1997) while TOC and UV254 and SUVA values contribute
to specific NOM fractions. Based on the study of these parameters, a
clustering algorithm with k-means = 2 was performed to classify the
quality of the DWTP raw waters into two categories with the aim to
classify influent water quality. The initial datasets analysis coupled to
expert knowledge provided by plant managers indicated that raw
water quality is changing over the year and is subjected to scenarios
where the quality is high and otherwhich is low. Hence, this paper is fo-
cussed on enhanced coagulationmodels development, not to define the
optimumnumber of clusters for the historical datasets. Studies focussed
to stablish the optimum cluster number should evaluatemetrics related
to the separability and compactness of clusters (Rendón et al., 2011).
Results obtained at the Llobregat and Ter DWTPs from the cluster anal-
ysis are presented in Fig. 2. There are five plots for each facility (left col-
umn Llobregat DWTP and right Ter DWTP) which classifies water
quality for the chosen influent parameters in two groups. These groups
were related to as baseline and peak water quality. In general, the
Llobregat DWTP parameters fluctuations are higher than those of the
Ter DWTP (see Fig. 2).
Fig. 2. Influentwater classifications resulting from cluster analysis at the LlobregatDWTP (left colu
quality parameters: turbidity, TOC, UV254, colour and SUVA values. Black and grey colours indicat
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Observing the output from the cluster analysis performed at both
DWTPs, basic differences between the plots could be attributed to the
catchment characteristics. To explain this, it is necessary to examine
the influentwater qualityfluctuations in depth (see Fig. 2). First, it is im-
portant to remark on the basic difference between the types of catch-
ment the two case studies have. Reservoir system work as a massive
water clarifier which, in turn, helps to maintain low fluctuations in the
quality of the influent water. However, extreme events (heavy rains)
could destabilize that system, leading to high changes in reservoir
water quality. On the other hand, river catchment quality ismore unsta-
ble, highly dependent on water flow (pollutants concentration) linked
to weather (runoff effect) and other external factors related to human
activities (Fernández-Turiel et al., 2003a; Gallart et al., 2011; Navarro
et al., 2002).

Therefore, the outputs of the cluster analysis in both the Llobregat
and Ter DWTPs classified influent water quality into two categories,
which were attributed to baseline and peak organic content. The main
difference was in the frequency of peak events: the river catchment
water quality presented seasonal fluctuations, whereas water from the
reservoir showed a lower frequency of peak events that were not
strictly related to seasonal changes. At the Ter DWTP, data which com-
prises a major part of dataset corresponds to the baseline group and
the punctual anomalies to peak scenario. These peak events can be visu-
ally identified in October 2018 and January 2020 (see Fig. 2, Ter DWTP).
Both series of data are directly related to historical heavy storms events,
rains with more than 180 L·m-2 (13th-15th October 2018) and more
than 400 L·m-2; the latter was Storm Gloria, which provoked a great
deal of damage andmultiple issues in this part of Europe (19-23 January
2020) (Amores et al., 2020). The Mediterranean region is periodically
affected by flash floods, characterized by local heavy rains in small sur-
face regions (Cramer et al., 2018). These events consisting in heavy rains
caused alterations in reservoirs stratifications and the quality of the in-
fluent of the Ter DWTP was affected by an increase of the water quality
parameters. According to Casamitjana et al. (2003), this change inwater
composition is due to the resuspension of the organic content present in
deep sediments towards epilimnetic waters (superficial waters). In
summary, the time series show that the Ter River system of reservoirs
act as amassive clarifier, thusmaintaining thewater quality in the influ-
ent of the Ter DWTP. However, there are some exceptional situations
where reservoir stability is altered and thenwater quality recovery (res-
ervoir stratification) is slow compared to the river regime fluctuations.
In the Llobregat River, changes are strongly linked to seasonal events,
and water content has higher fluctuations throughout the year. These
results are aligned to previous local catchment studies (Fernández-
Turiel et al., 2003a, 2003b). From this basis, DWTP should adapt coagu-
lation performance to this influent water quality changes.

Influent water quality was classified depending on baseline and
peak organic content for the two case-study DWTPs. Linking the infor-
mation presented in Table 1 with cluster analysis, two SC were con-
ducted at each DWTP (baseline and peak cases). At the Llobregat and
Ter DWTPs, a SC for each influent water classification was selected to
develop RSM models (see Fig. 2). SC 1 and SC 8 (see Table 2) belong
to the baseline cluster. Then, SC 4 and SC 5 are related to the peak clus-
ter. SC and their respective classification is indicated in Fig. 2. To link the
SC with clustering analysis from here the SC 1, 4, 5, 8 are named
Llobregat baseline (LB), Llobregat peak (LP), Ter peak (TP) and Ter base-
line (TB), respectively.

3.2. Evaluation of enhanced coagulation models

The RSM experiments were conducted and supernatants from the
jar test experiments were analysed. Model factors were pH, Cd and Fd,
while responses were introduced as percentage of removal of turbidity,
mn) and Ter DWTP (right column) during the period 2017-2020. Y axis are the selectedwater
e clusters: baseline and peak, respectively. The SCs are represented by vertical grey bars.
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Table 2
Enhanced coagulation models for each DWTP. The number of predictors selected based on best subset selection method, coefficients for each factor and the coefficient of determination
(R2) are presented.

DWTP Response No. predictors β0 β1 β2 β3 β4 β5 β6 β7 β8 β9 R2

LB Turbidity 4 34.5 – 1.4 18.1 – – -0.3 – -0.01 – 0.91
TOC 3 6.8 – 0.3 21.3 – -2.3 – – – – 0.91
UV254 5 223.3 -60.4 0.6 – – 3.9 -0.4 4.03 – – 0.73

LP Turbidity 4 77.7 1.6 0.5 – -0.02 – – – -0.01 – 0.84
TOC 3 9.5 – 1.2 – -0.1 – – – -0.01 – 0.84
UV254 2 33.5 – 0.3 – – – – -0.3 – – 0.91

TB Turbidity 5 −16.1 7.9 2 43.1 – -6.3 – – -0.02 – 0.94
TOC 5 30.2 -2.9 0.6 -19 – – – – -0.01 9.42 0.72
UV254 3 23.9 – 1.1 – – – – -0.2 -0.01 – 0.9

TP Turbidity 4 86.1 – 0.4 – – -0.8 0.1 – -0.01 – 0.79
TOC 4 −246 93.3 – – 0.17 – – -7.6 -0.02 – 0.83
UV254 4 74.5 – -0.8 – 0.3 – – -0.7 -0.01 – 0.9
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TOC and UV254. All runs and different standards for each RSM are pre-
sented in appendix A section.

Models were obtained from the RSM experiments and after the pre-
dictors selection. Prior to determine the optimum number of predictors
an evaluation task was carried out to pre-validate models. Several anal-
yses were checked such as diagnostics related to normalized plots
(models residual for experimental runs, predicted and actual values,
among others) to ensure models' fitting and detect outliers. Also, 3D
surface plots were analysed in both facilities under the two scenarios
to interpret models, which are presented in appendix D section. These
plots are useful to interpret visually (colour legend) factors interactions
and responses variations inside the response surface. The final equa-
tions for each DWTP scenario with the number of predictors selected,
coefficients and R2

adj. values are presented in Table 2.
Results from laboratory experiments (see appendix A) revealed that

turbidity experimented the highest mean removals in all enhanced co-
agulation models. The unified mean turbidity removals for all models
was 85%. This effect can be explained by considering that turbidity ac-
counts for thewhole spectrum of water compounds: organic, inorganic,
particulate, colloidal and dissolved. Concerning TOC and UV254, which
are related towater dissolved organic fractions, were less removed dur-
ing coagulation. From this results, it is appreciable that turbidity re-
moval is achieved in coagulation for the performed scenarios. The
general trend in all RSMs were that the percentage of removal was
higher in UV254 with respect to TOC. Examining all the RSMs, the aver-
age of removal for TOC and UV254 were 23% and 38%, respectively.
TOC and UV254 removals were low compared to turbidity, indicating
that the optimum conditions needs to be ensured in accordance to
these parameters to achieve an optimal removal of dissolved pollutants
during coagulation process.

Going into greater detail for both DWTPs, the maximum removals
(three responses combined) were obtained at neutral pH and medium
Cd and Fd. Otherwise,minimum removalswere shown at high pHvalues
above 8 and low Cd combined with high Fd. Regarding the latter, this is
due to the fact that aflocculant overdose induces a decrease of sedimen-
tation coagulation effect and, consequently, less efficiency in the process
(Katrivesis et al., 2019). The highest turbidity removals >80% were ob-
served at neutral pH and medium Cd and Fd, while the higher removals
for TOC were obtained at depressed pH levels. According to Bell-Ajy
et al. (2000) and Edwards (1997), this is attributed to the increase of
floc precipitation originated by the entrapment of sorbable TOC fraction
combined with alum hydroxide from the coagulant. The highest re-
movals of UV254 were shown at low to neutral pH levels, linked with
the removal of the organic compounds in these conditions (Altmann
et al., 2016). The Cd and Fd affected the removals in a different way for
each RSM. More information about the individual experiments, includ-
ing the RSMmodels' runs and responses analyses is provided in the ap-
pendix A section.

At the Llobregat DWTP, mean RSMs percentage of removals were
86% ± 23%, 21% ± 9%, 32% ± 13% for turbidity, TOC and UV254,
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respectively. On the other hand, the results obtained reflected that the
Ter DWTP responses mean percentage of removal were 84% ± 15% for
turbidity, 27%±20% for TOC and 45%±13% for UV254. For baseline clus-
ters (LB and TB), in both facilities RSM outputs presented similar per-
centage of removals, especially for turbidity and UV254 removal.
However, influent values of turbidity at the Llobregat DWTP were
higher than those at the Ter DWTP. The reason for this is because
Llobregat Riverwater is affected byweather (periods of rains/droughts),
runoff and some anthropogenic discharges of industrial origins, while
reservoir remains stable. Turbidity removals >90% at Ter DWTP were
difficult to observe during RSMs due to thewater quality from reservoir,
expressed in low turbidity values at the influent of the DWTP (5.23 and
4.76 NTU, respectively).

LP results presented turbidity removals ≥90% for all RSM experi-
ments. This is due to the high initial value (63 NTUs), propitiating ele-
vated removal values for this parameter. At the Ter DWTP, TP showed
high influent values of TOC and UV254, indicating that during peak sce-
narios the dissolved NOM fraction needs to be removed for the optimal
coagulation at this facility. The percentage of removal of TOC and UV254

comparing TB and TP is significant, where TOC has a mean removal of
11% in TB and 43% in TP and UV254 has a mean removal of 37% for TB
and 53% for TP.

All enhanced coagulationmodels are presented in Table 2. Related to
predictors selection, no single model with p = 9 was selected after the
application of the best subset selection method. Themaximum number
of predictors was located at p = 5. Despite the total number of predic-
tors, it is important to identify which are the selected ones in order to
proceed with the sensitivity analysis. R2 predictors selection for all
DWTPs scenarios and coefficients combination (2p) are presented in ap-
pendix C. Enhanced coagulation models considering turbidity, TOC and
UV254 were performed with a mean R2 of 0.85. The mean responses R2

were 0.87, 0.83 and 0.86 for turbidity, TOC and UV254 removals. The
equation coefficients are not normalized, therefore some of them are
negative. As a consequence, the following step is to perform a sensitivity
analysis to identify the relative weight of each individual factor/predic-
tor to understand the enhanced coagulation. Predictors selection based
on R2, R2

adj. aid to ensure predictability. Also, the fact to consider SSE (re-
siduals) to choose the best model works as a prevention barrier for
avoiding biased models (James et al., 2013).

Hence, depending on the nature of the influent waters, coagulation
can be optimised following models developed with RSM in a baseline
or peak scenario. These model outputs linked to Table 1 suggest that
during LP an increase of particulate water fraction at the influent is de-
tected (high values of turbidity)while TP showshigh values of dissolved
NOM fraction at the influent (high TOC and UV254).

3.3. Sensitivity analysis

Sensitivity analysis was performed to discuss the individual factors
influence for each response, based on the equations resulting from



Table 3
Deltamean-squared (δmsqr) values for individual factors' coefficients for each enhanced coagulationmodel. Factors' relative impactwas simplified for pH, Cd and Fd. Hyphenated cells cor-
respond to the coefficients dismissed after predictors selection.

DWTP Response δmsqrβ1 δmsqrβ2 δmsqrβ3 δmsqrβ4 δmsqrβ5 δmsqrβ6 δmsqrβ7 δmsqrβ8 δmsqrβ9 Simplified relative impact

LB Turbidity – 0.5 1.3 – – 0.6 – 0.1 – Fda > Cd
TOC – 0.02 0.3 – 0.7 – – – – Fda > Cd
UV254 0.3 0.002 – – 0.09 0.01 0.4 – – pHa > Cd

LP Turbidity 0.4 0.1 – 0.1 – – – 0.03 – pHa > Cd
TOC – 0.2 – 0.5 – – – 0.04 – Cda

UV254 – 0.01 – – – – 0.5 – – pHa > Cd
TB Turbidity 0.5 0.1 0.7 – 1.6 – – 0.02 – Fda > pH > Cd

TOC 0.5 0.02 0.9 – – – – 0.01 1.8 Fda > pH > Cd
UV254 – 0.4 – – – – 0.9 0.1 – pHa > Cd

TP Turbidity – 0.1 – – 0.2 0.1 – 0.01 – Cda

TOC 7.4 – – 0.2 – – 2.2 0.1 – pHa > Cd
UV254 – 0.2 – 0.2 – – 0.2 0.1 – pHa ≈ Cd

a Factors selected for profile plots visualization.
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RSM experiments and the best subset selection method. For this pur-
pose, delta mean-squared analysis was applied to the models with the
aim to identify the relative weights of model factors. For each scenario
three enhanced coagulation models were obtained, one for each se-
lected response: turbidity, TOC and UV254; giving a total number of
twelve equations (Table 2, β coefficients).

Delta mean-squared values for individual factors (β1, β2, β3), com-
bined interactions (β4, β5, β6) and quadratic effects (β7, β8, β9) are pre-
sented in Table 3. To proceed with the discussion, the relative impact of
individual factors was included to Table 3, considering only the single
individual factors contribution. Despite this simplification, factors inter-
actions expressed by β4, β5, β6 are significant for some of the enhanced
coagulation models. For almost all scenarios (LB, LP, TB and TP) pH and
Cd emerged as important factors. According to Bell-Ajy et al. (2000), pH
is the most important factor for NOM removal during coagulation pro-
cess.When coagulation is adjusted at the optimumpH, removals are im-
proved because of major alum-NOM complexation and less coagulant
demand. At this point, it is important to note that pH is legislated for
water consumption and it is not feasible to optimise the process in the
range of optimumpH, because this can be located outside of the thresh-
old limits. From this, Cd and Fd adjustment play a key role to achieve en-
hanced coagulation in drinking water production.

Prior to comparing the models, it is important to remark that results
from sensitivity analysis comparison is applicable for models developed
at the same DWTP, because each RSM was designed under a specific
treatment train and operational ranges. Furthermore, nature and re-
gime of the sources as well as water characterization differs from the
Llobregat river in comparison to the Ter river reservoirs system, details
of which can be found in the cluster analysis section.

Starting with the comparison between baseline and peak events,
there are similar behaviours at the two DWTPs. Regarding LP and TP,
an increase of organic load is expected at the influent, and the sensitivity
analysis reveals that pH and Cd are the key factors to ensure enhanced
coagulation (Table 3). For these cases, when influent waters belong to
peak scenarios, the optimum pH range is wider and the Cd needs to
be carefully adjusted to ensure NOM adsorption and chemical bridging
(Gaikwad andMunavalli, 2019). However, during LB and TB, it is neces-
sary to carefully adjust pH, Cd and Fd to achieve high levels of pollutants
removals during coagulation. In this cases Fd is also considered a key pa-
rameter, presenting high delta mean-squared, hence its importance on
process performance.

Accounting for individual responses, Cd has a great influence on tur-
bidity and UV254 removals efficiency and was selected as a predictor for
all models accounting for these responses, ensuring high levels of re-
movals when Cd is correctly optimised (Rocha et al., 2020). Regarding
TOC value, there are different relevant factors depending on the sce-
nario. This basically can be explained from the assumption that TOC
value represents a great variety of dissolved compounds, depending
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on the predominant group ofwater pollutants the key conditions for co-
agulation can be modified.

Stablishing the comparison from the different water catchments, as
a result of clustering analysis section Llobregat river peak events (LP)
are linked clearly to an increase of turbidity. This is mainly associated
to rains and its derived runoff effect. Based on that, a major part of
water pollutants present in water are linked to particles accounting
for turbidity more than the dissolved fraction (TOC and UV254). Accord-
ing to Aboubaraka et al. (2017), turbidity is representative for coloured
organic compounds, changing water colour. Within this context and ac-
cording to the sensitivity analysis, during LP Cd requires to be carefully
optimised to ensure the particles aggregation and its sedimentation
during coagulation process.

At the Ter DWTP, turbidity is usually stable thorough the year. Clus-
tering analysis denoted that during peak scenarios (TP) TOC and UV254

are high, then pH adjustment gains importance, especially for TOC re-
moval. TOC removal is usually related to a decrease in operational pH,
resulting in NOM protonation by acid addition, favouring complexation
reactions between metal-based coagulants and carbon-based com-
pounds (Bell-Ajy et al., 2000). On the other hand, in baseline scenario
(TB) Fd gains importance (see Table 3) and requires being precisely ad-
justed becausewater contains less colloidal and suspended compounds,
and the optimum range of Fd becomes more specific. An overdose of
flocculant could induce an increase in turbidity at the effluent of coagu-
lation process.

Profile plots for enhanced coagulation were performed to comple-
ment the information provided by the sensitivity analysis (Fig. 3).
Fig. 3 presents the profile plots for the enhanced coagulation models
for turbidity, TOC andUV254 removals at each DWTP under the different
scenarios. In each plot, the entire range of pH, Cd or Fd is presented for
the low, medium or high values of the other factors. The pHwas ranged
in a feasible full-scale values of operation from 6 to 8. The selected pro-
file plots (see Fig. 3) were the cases where TOC or UV254 emerge as sig-
nificant factors (see Table 3). Profile plots (see Fig. 3) for each response
(turbidity, TOC and UV254) were levelled according to the other signifi-
cant factors (see Table 3).

According to Fig. 3, in LB the pH should be adjusted at a neutral levels
and Fd has a positive relation for turbidity, TOC and UV254 removals. In
the case of turbidity removal, high Fd increases significantly turbidity re-
movalwith low Cd dose, being themediumdose of Cd and Fd the best for
an optimal operation. Regarding TOC, pH is not critical (≈7) and Fd and
Cd have a strong positive impact in the percentage of removal. For LB-
UV254, pH is significant for the model (sensitivity analysis results) but
not critical between 6 and 8.However, Cd has clear positive impact to re-
move UV254. In summary, for LB at a neutral pH, high Cd and Fd TOC and
UV254 removals improve. Compared to LP, medium level of Cd and low-
neutral pH are required for turbidity, TOC and UV254 removals. In accor-
dance to sensitivity analysis, Fd is not relevant for enhanced coagulation



Fig. 3. Profile plots for Turbidity, TOC and UV254 percentage of removals for LB, LP, TB and TP (for the factors presenting the highest δmsqr). The X axis are this factors presenting the highest
δmsqr (pH, Cd and Fd) for each response DWTP scenario, located at Y axis as % of removal. Then, the other factors presenting lower relative impact were levelled for theminimum, medium
and maximum values according to the operational DWTP ranges.
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in LP case. Regarding TB, the optimal adjustment of Fd is located at me-
diumpHandCd. Concerning the TP scenarios, the optimum removals for
dissolved NOM are located atmedium pH and Cd levels (Fd is not signif-
icant). In those cases, the medium range of pH-Cd is highlighted as a
proper option for coagulation removals. Profile plots are useful to com-
plement the information obtained through the sensitivity analysis, in-
creasing model understanding for each specific scenario.
8

Results from sensitivity analysis indicate that enhanced coagulation
for river catchment in baseline scenario is subjected to the optimal ad-
justment of the three factors influencing enhanced coagulation while
during peaks, which are related to the increase of particulate com-
pounds in water resulting from rain runoff effects, pH and Cd are crucial
for enhanced coagulation.On the other hand, reservoir catchment is sta-
ble all over the time series where enhance coagulation is controlled by
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high Cd and Fd, but during peaks (extreme events) an increase of dis-
solvedNOM is expected at the influentwaters, resulting from the resus-
pension of reservoir deep sediments. For these cases, coagulation pH
should be carefully levelled to ensure the optimum TOC removal and
Cd emerges as a crucial factor for turbidity and UV254.

3.4. Practical implications

In this section, practical implications as well as the limitations for
models implementation are stated. Enhanced coagulation models im-
plementation is based on influent waters classification, thus determin-
ing which model to propose for coagulation. Then, depending on the
fixed enhanced coagulation optimisation criteria for the selected quality
standards (responses removal), a specific pH, Cd and Fd can be proposed
by models for the desired operation (Fig. 4).

This study, which has been developed within the context of two
water treatment facilities, is adaptable to other full scale DWTPs, but
some requirements should be taken in consideration. Firstly, the type
of catchment. Results demonstrate that influent water quality is sub-
jected to the type of surface water catchment (river or reservoir) and
these has an effect on the optimisation of coagulation process. The
water regimes differ between them and this affects water quality, quan-
tity, as well as the frequency of these fluctuations. Then, the installation
and the capacity to monitor and track influent water quality is crucial
when implementing the models. To characterise waters, a number of
minimum parameters should be analysed, i.e., at least the three basics
for enhanced coagulation models: turbidity, TOC and UV254. This step,
in some cases, could imply capital investment and derived operational
costs (sensormaintenance and replacement). Also, all these data gener-
ated by influent water sensors should be upload to supervisory control
anddata acquisition (SCADA), a control systemarchitecturewith the ca-
pacity to register and display data.Moreover, a flexible operation for co-
agulationwould be required, allowingwater treatment to be adapted to
the proposed model outputs (operational factors). In other words,
DWTPs should have the capacity to easily change pH, Cd and Fd. It is im-
portant to considerer coagulation location in water treatment train, at
the two case studies raw water parameters were used because no
other process was affecting the water characterization. Should there
be other steps before coagulation, the quality of influent waters would
not be representative for the optimisation.

There are some practical operational implications which could be
taken in consideration. In the case of extreme events, detecting high
levels of turbidity in the influent (>40NTUs), coagulation optimisation
criteria should be readjusted by, at least, >95% to ensure the removal
during coagulation and avoid pore blockage in the subsequent pro-
cesses if there are some filtration-based technologies involved. Also,
taking in consideration the results obtained in this study, in these
cases the correct adjustment of Cd becomes crucial for enhanced coagu-
lation because pH level should be maintained within the legislated
ranges. This means that can exist cases where model-propose pH levels
that are not applicable to full-scale operations. For example, if pH= 5.5
or 8.5 are suggested to ensure optimum conditions for a specific re-
moval criterion, this may will be the ideal for enhanced coagulation,
but is not feasible for drinkingwater production and the later consump-
tion. Then, some restrictions can be applied to the models by consider-
ing a readjustment of Cd and Fd instead of the decrease in pH by fixing
Fig. 4. Roadmap for the implementation of enhan

9

some limiting thresholds (e.g., pH> 7 and pH< 8). During baseline sce-
narios, where water quality at the influent is not considered poor and
water characterization levels is low, enhanced coagulation depends on
the correct adjustment of pH, Cd and Fd, being the latter a determinant
parameter for process performance.

The mathematical models developed here have some design limita-
tions and it is important to state them for the future applications. First,
RSMexperiments andmodels should be performed for individual catch-
ments. Moreover, to develop RSM model replicates (jar test experi-
ments) during the year within specific catchment/weather situations
would bring additional information for the existingmodels and increase
their reliability in all scenarios. Under the supervision of an experienced
user, the proposed models also have the potential to act as decision-
making support tools with which to check the viability of any proposed
values (see Fig. 4). That said, a user interface for that taskwould need to
be developed.

As a point of insight into (and related to) prevention tasks, increas-
ing the capacity to be able to monitor and predict weather forecast in
the drinking-water sector by controlling hydraulic regimes, retention
times and catchment basins, is important. As present and near-future
predictions anticipate, the frequency of extreme weather events will
be reduced in time and therefore, regular floods will have to be taken
in consideration for decision-making purposes. This study highlights
the importance of meteorology to water production/management sec-
tor. In the case of river (seasonality) and reservoir (extreme events)
catchments the relationship between influent water quality and rains/
storms was highlighted. These exceptional circumstances will become
habitual and adaptingwater treatment to themwill be required to safe-
guard the water supply during these stages.

4. Conclusions

Enhanced coagulation models were developed to optimise coagula-
tion processes at two Mediterranean DWTPs. Specifically, these models
were designed to remove turbidity, TOC and UV254, which are stated as
water quality parameters and NOM surrogates. Cluster analysis based
on K-means algorithm was applied to influent water characterization
databases to classify waters into baseline and peak organic content.
For each cluster, a coagulation RSM accounting for turbidity, TOC and
UV254 percentage of removals was designed and developed. Then,
after the predictors selection the models outputs (equations) were val-
idatedwith a sensitivity analysis based on deltamean-squared (δmsqr) to
quantify model factors relative impact for the previously-mentioned
scenarios. The models mean R2 value for the three responses at
Llobregat DWTP were 0.85 and 0.86 while in Ter DWTP were 0.85 and
0.84, in both cases for baseline and peak scenarios, respectively.

The study of these models was conducted to determine that the dif-
ferences between water catchments alter the quality of the influent
water at the DWTPs, thus affecting the optimum for enhanced coagula-
tion. Results from clusters analysis revealed that the water catchment
determines drinkingwater quality because of the temporal fluctuations
of influent organic load. Clustering analysis provided information about
the intensity, the frequency and thewater characterization during base-
line and peak scenarios. Then, sensitivity analysis allowed to find out
which are the key factors for enhanced coagulation depending on the
scenario.
ced coagulation models at a full-scale DWTP.
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The Llobregat River is a challenging case due to seasonal fluctuations
and the sudden high organic loads in the waters caused by anthropo-
genic pressure and rains runoff. On the other hand, rather than the sea-
sonal change, the influent waters at the Ter DWTP (reservoir
catchment) are altered through extreme weather events. Results of
cluster analysis determined that peak events at LlobregatDWTP are sea-
sonal and related to an increase of particles and coloured compounds,
expressed by high levels of turbidity at the influent. On the other
hand, Ter DWTP peak scenarios are linked to extreme weather events
and are challenging due to the increase of dissolved NOM, which is
expressed by higher values of TOC and UV254 more than turbidity.
From this and considering the sensitivity analysis, in baseline scenarios
it is important to adjust at the optimum levels (which are not the
highest) the three influential factors (pH, Cd and Fd) in order to ensure
enhanced coagulation, resulting obvious if low pollutants load is located
at the influent waters. However, during peak scenarios pH and Cd be-
come the key factors for enhanced coagulation and Fd is not relevant
for the process itself due to reduce the high levels of pollutants present
at the influent. In this cases Cd is the key factor to ensure the water
quality.
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